Published online by Cambridge University Press: 26 April 2006
This paper reports an experimental study of the effects of an externally applied electric field on the dynamics of drop formation in the dripping mode from a vertical metal capillary. The fluid issuing out of the capillary is a viscous liquid, the surrounding ambient fluid is air, and the electric field is generated by establishing a potential difference between the capillary and a horizontal, circular electrode of large radius placed downstream of the capillary outlet. By means of an ultra-high-speed video system that is capable of recording up to 12000 frames per second, special attention is paid to the dynamics of the liquid thread that connects the primary drop that is about to detach and fall from the capillary to the rest of the conical liquid mass that is hanging from it. The experiments show that as the strength of the electric field increases, the volume of the primary drop decreases whereas the maximum length attained by the thread increases. The reduction in the volume of primary drops and the increase in the length of threads occur because the effective electromechanical surface tension of the fluid interface falls as the field strength rises. For the highly conducting drops of aqueous NaCl solutions studied in this work, the increase in thread length is due solely to the rising importance of normal electric stress relative to the falling importance of surface tension. However, as the conductivity of the drop liquid decreases, the thread length is further increased on account of the stabilizing influence exerted by the increasing electric shear stress that acts on the charged liquid–gas interface. Two new phenomena are also reported that have profound implications for electrohydrodynamics and practical applications. First, it is shown that whereas the liquid thread always ruptures at its downstream end in the absence of an applied electric field or when the field strength is low, it ruptures at its upstream end when the field strength is sufficiently high. Since satellite drops are produced directly from the thread once both of its ends have ruptured, the change in the mechanism of breakup with field strength influences the dynamics and fate of satellite drops. Second, it is demonstrated that the generation of satellites, which are often undesirable in applications, can be suppressed by the judicious application of an electric field. This is accomplished by using a field of moderate strength to induce charges of the opposite sign on the nearby surfaces of the satellite drop and the liquid that remains pendant from the tube following thread rupture. At high field strengths, induced charge effects are too weak to compete with net charge effects: the satellite is repelled by the pendant drop and falls under gravity as a distinct entity.