Published online by Cambridge University Press: 21 April 2006
Close interactions between pairs of two-dimensional vortices of like sign were investigated in experiments with barotropic vortices and baroclinic vortices. The vortices were generated by sources or sinks in a rotating fluid which, respectively, was homogeneous or contained a two-layer density stratification. For two identical anticyclonic, unstratified vortices there was a critical separation distance beyond which the vortices coalesced to form a single larger anticyclone. The critical distance d*, scaled by the radius R of a core having non-zero relative vorticity, was d*/R = 3.3 ± 0.2. This value is in agreement with results of previous numerical simulations for finite-area vortices in non-rotating flows. The effects on vortex structure of Ekman pumping due to the presence of a rigid boundary caused cyclonic vortices to coalesee from larger distances. Baroclinic vortices in a two-layer stratification were also found to coalesce despite a potential-energy barrier. However, the critical separation distance depended on the internal Rossby radius. When the Rossby radius was large compared with the core radius, vortices coalesced from distances much greater than the critical distance for barotropic vortices. Coalescing of two vortices of equal size and strength led to two symmetric entwined spirals of water, while close interaction of unequal vortices caused the weaker vortex to be wrapped around the outer edge of the stronger. Implications of these results are discussed for ocean eddies and intense atmospheric cyclones.