Published online by Cambridge University Press: 26 April 2006
The evolution of an internal gravity wave is investigated by direct numerical computations. We consider the case of a standing wave confined in a bounded (square) domain, a case which can be directly compared with laboratory experiments. A pseudo-spectral method with symmetries is used. We are interested in the inertial dynamics occurring in the limit of large Reynolds numbers, so a fairly high spatial resolution is used (1292 or 2572), but the computations are limited to a two-dimensional vertical plane.
We observe that breaking eventually occurs, whatever the wave amplitude: the energy begins to decrease after a given time because of irreversible transfers of energy towards the dissipative scales. The life time of the coherent wave, before energy dissipation, is found to be proportional to the inverse of the amplitude squared, and we explain this law by a simple theoretical model. The wave breaking itself is preceded by a slow transfer of energy to secondary waves by a mechanism of resonant interactions, and we compare the results with the classical theory of this phenomenon: good agreement is obtained for moderate amplitudes. The nature of the events leading to wave breaking depends on the wave frequency (i.e. on the direction of the wave vector); most of the analysis is restricted to the case of fairly high frequencies.
The maximum growth rate of the inviscid wave instability occurs in the limit of high wavenumbers. We observe that a well-organized secondary plane wave packet is excited. Its frequency is half the frequency of the primary wave, corresponding to an excitation by a parametric instability. The mechanism of selection of this remarkable structure, in the limit of small viscosities, is discussed. Once this secondary wave packet has reached a high amplitude, density overturning occurs, as well as unstable shear layers, leading to a rapid transfer of energy towards dissipative scales. Therefore the condition of strong wave steepness leading to wave breaking is locally attained by the development of a single small-scale parametric instability, rather than a cascade of wave interactions. This fact may be important for modelling the dynamics of an internal wave field.