Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T17:16:28.817Z Has data issue: false hasContentIssue false

Axisymmetric outflows from binary point-source systems in the presence of an interface

Published online by Cambridge University Press:  02 February 2016

Lawrence K. Forbes*
Affiliation:
School of Mathematics and Physics, University of Tasmania, Box 37, Hobart 7001, Australia
*
Email address for correspondence: [email protected]

Abstract

Fluid outflow is considered, from a binary system of two point sources. The sources inject fluid of a lower density than the surrounding medium, and there is a sharp interface separating the two fluids. The overall geometry is taken to be axisymmetric around the line joining the two sources. Numerical solutions are presented for the shape of the interface in unsteady flow, and compared with a linearized solution based on small deformation of the interface from its initial spherical configuration. In addition, a novel spectral method is developed for the solution of the Boussinesq viscous flow problem, accounting exactly for the presence of the two sources and modelling the interface as a narrow region in which fluid mixing is possible. Bipolar outflow jets are seen to be possible.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A.(Eds) 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Chené, A.-N. & St-Louis, N. 2010 Large-scale periodic variability of the wind of the Wolf–Rayet star WR 1 (HD 4004). Astrophys. J. 716, 929941.CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H. & Paardekooper, J.-P. 2015 3D radiative transfer simulations of Eta Carinae’s inner colliding winds – II. Ionization structure of helium at periastron. Mon. Not. R. Astron. Soc. 450, 13881398.Google Scholar
Davidson, K. & Humphreys, R. M. 1997 Eta Carinae and its environment. Annu. Rev. Astron. Astrophys. 35, 132.Google Scholar
Epstein, R. 2004 On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas 11, 51145124.Google Scholar
Forbes, L. K. 2009 The Rayleigh–Taylor instability for inviscid and viscous fluids. J. Engng Maths 65, 273290.CrossRefGoogle Scholar
Forbes, L. K. 2011a A cylindrical Rayleigh–Taylor instability: radial outflow from pipes or stars. J. Engng Maths 70, 205224.Google Scholar
Forbes, L. K. 2011b Rayleigh–Taylor instabilities in axi-symmetric outflow from a point source. ANZIAM J. 53, 87121.Google Scholar
Forbes, L. K. 2014a How strain and spin may make a star bipolar. J. Fluid Mech. 746, 332367.CrossRefGoogle Scholar
Forbes, L. K. 2014b Planar Rayleigh–Taylor instabilities: outflows from a binary line-source system. J. Engng Maths 89, 7399.CrossRefGoogle Scholar
Forbes, L. K. & Brideson, M. A. 2014 Exact solutions for interfacial outflows with straining. ANZIAM J. 55, 232244.Google Scholar
Forbes, L. K., Chen, M. J. & Trenham, C. E. 2007 Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow. J. Comput. Phys. 221, 269287.CrossRefGoogle Scholar
Forbes, L. K. & Hocking, G. C. 2007 Unsteady draining flows from a rectangular tank. Phys. Fluids 19, 082104,1–14.Google Scholar
Forbes, L. K., Paul, R. A., Chen, M. J. & Horsley, D. E. 2015 Kelvin–Helmholtz creeping flow at the interface between two viscous fluids. ANZIAM J. 56, 317358.Google Scholar
Forbrich, J., Stanke, Th., Klein, R., Henning, Th., Menten, K. M., Schreyer, K. & Posselt, B. 2009 A multi-wavelength study of a double intermediate-mass protostar – from large-scale structure to collimated jets. Astron. Astrophys. 493, 547556.Google Scholar
Franco-Hernández, R. & Rodríguez, L. F. 2003 VLA detection of a double radio source at the center of the HH 288 quadrupolar outflow. Rev. Mex. Astron. Astrofis. 39, 107111.Google Scholar
Gómez, L., Rodríguez, L. F. & Loinard, L. 2013 A one-sided knot ejection at the core of the HH 111 outflow. Rev. Mex. Astron. Astrofis. 49, 7985.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2000 Tables of Integrals, Series and Products, 6th edn. Academic.Google Scholar
Hocking, G. C. 1995 Supercritical withdrawal from a 2-layer fluid through a line sink. J. Fluid Mech. 297, 3747.Google Scholar
Kreyszig, E. 2011 Advanced Engineering Mathematics, 10th edn. Wiley.Google Scholar
Ladd, E. F. & Hodapp, K.-W. 1997 A double outflow from a deeply embedded source in Cepheus. Astrophys. J. 475, 749759.Google Scholar
Lovelace, R. V. E., Romanova, M. M., Lii, P. & Dyda, S. 2014 On the origin of jets from disc-accreting magnetized stars. Comput. Astrophys. Cosmol. 1, 10pp. http://www.comp-astrophys-cosmol.com/content/1/1/3.CrossRefGoogle Scholar
Lovelace, R. V. E., Romanova, M. M., Ustyugova, G. V. & Koldoba, A. V. 2010 One-sided outflows/jets from rotating stars with complex magnetic fields. Mon. Not. R. Astron. Soc. 408, 20832091.Google Scholar
Madura, T. I., Clementel, N., Gull, T. R., Kruip, C. J. H. & Paardekooper, J.-P. 2015 3D printing meets computational astrophysics: deciphering the structure of ${\it\eta}$ Carinae’s inner colliding winds. Mon. Not. R. Astron. Soc. 449, 37803794.Google Scholar
Matsuoka, C. & Nishihara, K. 2006 Analytical and numerical study on a vortex sheet in incompressible Richtmyer–Meshkov instability in cylindrical geometry. Phys. Rev. E 74, 066303,1–12.CrossRefGoogle Scholar
Mikaelian, K. O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17, 094105,1–13.CrossRefGoogle Scholar
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. R. Soc. Lond. A 365, 105119.Google Scholar
Murphy, G. C., Lery, T., O’Sullivan, S., Spicer, D., Bacciotti, F. & Rosen, A. 2008 Interacting jets from binary protostars. Astron. Astrophys. 478, 453460.Google Scholar
NASA, 2015 NASA Observatories take an unprecedented look into superstar Eta Carinae. https://www.nasa.gov/content/goddard/nasa-observatories-take-an-unprecedented-look-into- superstar-eta-carinae.Google Scholar
Peregrine, D. H.1972, A line source beneath a free surface. Rep. no. 1248. University of Wisconsin Mathematics Research Center.Google Scholar
Smith, N. 2013 A model for the 19th century eruption of Eta Carinae: CSM interaction like a scaled-down Type IIn Supernova. Mon. Not. R. Astron. Soc. 429, 23662379.Google Scholar
Stahler, S. W. & Palla, F. 2004 The Formation of Stars. Wiley-VCH.Google Scholar
Steffen, W., Teodoro, M., Madura, T. I., Groh, J. H., Gull, T. R., Mehner, A., Corcoran, M. F., Damineli, A. & Hamaguchi, K. 2014 The three-dimensional structure of the Eta Carinae Homunculus. Mon. Not. R. Astron. Soc. 442, 33163328.Google Scholar
Stokes, T. E., Hocking, G. C. & Forbes, L. K. 2003 Unsteady free-surface flow induced by a line sink. J. Engng Maths 47, 137160.CrossRefGoogle Scholar
Tuck, E. O. & Vanden-Broeck, J.-M. 1984 A cusp-like free-surface flow due to a submerged source or sink. J. Austral. Math. Soc. B 25, 443450.Google Scholar
Ulvestad, J. S., Wrobel, J. M. & Carilli, C. L. 1999 Radio continuum evidence for outflow and absorption in the Seyfert 1 Galaxy Markarian 231. Astrophys. J. 516, 127140.Google Scholar
Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. 1978 Divergent low-Froude-number series expansion of non-linear free-surface flow problems. Proc. R. Soc Lond. A 361, 207224.Google Scholar
Xue, M. & Yue, D. K. P. 1998 Nonlinear free-surface flow due to an impulsively started submerged point sink. J. Fluid Mech. 364, 325347.Google Scholar
Zinnecker, H. & Yorke, H. W. 2007 Toward understanding massive star formation. Annu. Rev. Astron. Astrophys. 45, 481563.Google Scholar