Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T19:31:35.506Z Has data issue: false hasContentIssue false

Application of transport equations for constructing exact solutions for the problem of motion of a fluid with a free boundary

Published online by Cambridge University Press:  11 March 2020

E. A. Karabut*
Affiliation:
Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia Novosibirsk State University, Novosibirsk, 630090, Russia
E. N. Zhuravleva
Affiliation:
Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia Novosibirsk State University, Novosibirsk, 630090, Russia
N. M. Zubarev
Affiliation:
P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119333, Russia Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620016, Russia
*
Email address for correspondence: [email protected]

Abstract

A problem of an unsteady plane flow of an ideal incompressible fluid with a free boundary is considered. It is shown that the solution can be found by using a complex transport equation. In this case, the problem is linearized by means of the hodograph transform (the velocity components are chosen as independent variables). Examples of exact solutions are obtained. Various scenarios of formation of singularities on the free boundary within a finite time are considered.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G. R. & Xie, C. 2011 Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 685, 83116.CrossRefGoogle Scholar
Caflisch, R. E., Ercolani, N., Hou, T. Y. & Landis, Y. 1993 Multi-valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems. Commun. Pure Appl. Maths XLVI, 453499.CrossRefGoogle Scholar
Crew, S. C. & Trinh, P. H. 2016 New singularities for Stokes waves. J. Fluid Mech. 798, 256283.CrossRefGoogle Scholar
Dirichlet, G. L. 1861 Untersuchungen über ein Problem der Hydrodynamik. J. Reine Angew. Math. 58, 181216.Google Scholar
Dyachenko, A. I., Dyachenko, S. A., Lushnikov, P. M. & Zakharov, V. E. 2019 Dynamics of poles in 2D hydrodynamics with free surface: new constants of motion. J. Fluid Mech. 874, 891925.CrossRefGoogle Scholar
Dyachenko, A. I. & Zakharov, V. E. 1994 Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (2), 144148.CrossRefGoogle Scholar
Gurevich, M. I. 1965 Theory of Jets in Ideal Fluids. Academic Press.Google Scholar
John, F. 1953 Two-dimensional potential flows with a free boundary. Commun. Pure Appl. Maths 6, 497503.CrossRefGoogle Scholar
Karabut, E. A. & Kuzhuget, A. A. 2014 Conformal mapping, Padé approximants and example of flow with significant deformation of free boundary. Eur. J. Appl. Maths 25, 729747.CrossRefGoogle Scholar
Karabut, E. A., Petrov, A. G. & Zhuravleva, E. N. 2019 Semi-analytical study of the Voinovs problem. Eur. J. Appl. Maths 30, 298337.CrossRefGoogle Scholar
Karabut, E. A. & Zhuravleva, E. N. 2014 Unsteady flows with a zero acceleration on the free boundary. J. Fluid Mech. 754, 308331.CrossRefGoogle Scholar
Karabut, E. A. & Zhuravleva, E. N. 2016 Reproduction of solutions in the plane problem on motion of a free-boundary fluid. Dokl. Phys. 61 (7), 347350.CrossRefGoogle Scholar
Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. 1994 Formation of singularities on the free surface of an ideal fluid. Phys. Rev. E 49 (2), 12831290.Google ScholarPubMed
Longuet-Higgins, M. S. 1972 A class of exact, time-dependent, free surface flows. J. Fluid Mech. 55 (3), 529543.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1980 On the forming of sharp corners at a free surface. Proc. R. Soc. Lond. A 371, 453478.Google Scholar
Lushnikov, P. M. 2016 Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech. 800, 557594.CrossRefGoogle Scholar
Lushnikov, P. M. & Zubarev, N. M. 2018 Exact solutions for nonlinear development of a Kelvin–Helmholtz instability for the counterflow of superfluid and normal components of helium II. Phys. Rev. Lett. 120, 204504.CrossRefGoogle ScholarPubMed
Nalimov, V. I. & Pukhnachov, V. V.1975 Unsteady motions of an ideal fluid with a free boundary. Report, Novosibirsk State University, Novosibirsk (in Russian).Google Scholar
Ovsyannikov, L. V. 1967 General equation and examples. In The Problem of the Unstable Flow with a Free Boundary, pp. 575. Nauka (in Russian).Google Scholar
Tanveer, S. 1991 Singularities in water waves and Rayleigh–Taylor instability. Proc. R. Soc. Lond. A 435, 137158.Google Scholar
Zhuravleva, E. N., Zubarev, N. M., Zubareva, O. V. & Karabut, E. A. 2019 Algorithm for constructing exact solutions of the problem of unsteady plane motion of a fluid with a free surface. JETP Lett. 110 (7), 443448.CrossRefGoogle Scholar
Zubarev, N. M. & Karabut, E. A. 2018 Exact local solutions for the formation of singularities on the free surface of an ideal fluid. JETP Lett. 107, 412417.CrossRefGoogle Scholar
Zubarev, N. M. & Kuznetsov, E. A. 2014 Singularity formation on a fluid interface during the Kelvin–Helmholtz instability development. J. Expl Theor. Phys. 119 (1), 169178.CrossRefGoogle Scholar