Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T01:47:10.388Z Has data issue: false hasContentIssue false

Applicability of Taylor’s hypothesis in rough- and smooth-wall boundary layers

Published online by Cambridge University Press:  28 December 2016

D. T. Squire*
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
N. Hutchins
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
C. Morrill-Winter
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
M. P. Schultz
Affiliation:
Department of Naval Architecture and Ocean Engineering, US Naval Academy, Annapolis, MD 21402-5042, USA
J. C. Klewicki
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia Mechanical Engineering Department, University of New Hampshire, Durham, NH, USA
I. Marusic
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Victoria, 3010, Australia
*
Email address for correspondence: [email protected]

Abstract

The spatial structure of smooth- and rough-wall boundary layers is examined spectrally at approximately matched friction Reynolds number ($\unicode[STIX]{x1D6FF}^{+}\approx 12\,000$). For each wall condition, temporal and true spatial descriptions of the same flow are available from hot-wire anemometry and high-spatial-range particle image velocimetry, respectively. The results show that over the resolved flow domain, which is limited to a streamwise length of twice the boundary layer thickness, true spatial spectra of smooth-wall streamwise and wall-normal velocity fluctuations agree, to within experimental uncertainty, with those obtained from time series using Taylor’s frozen turbulence hypothesis (Proc. R. Soc. Lond. A, vol. 164, 1938, pp. 476–490). The same applies for the streamwise velocity spectra on rough walls. For the wall-normal velocity spectra, however, clear differences are observed between the true spatial and temporally convected spectra. For the rough-wall spectra, a correction is derived to enable accurate prediction of wall-normal velocity length scales from measurements of their time scales, and the implications of this correction are considered. Potential violations to Taylor’s hypothesis in flows above perturbed walls may help to explain conflicting conclusions in the literature regarding the effect of near-wall modifications on outer-region flow. In this regard, all true spatial and corrected spectra presented here indicate structural similarity in the outer region of smooth- and rough-wall flows, providing evidence for Townsend’s wall-similarity hypothesis (The Structure of Turbulent Shear Flow, vol. 1, 1956).

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.Google Scholar
Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J. 2007 Turbulent flow in smooth and rough pipes. Phil. Trans. R. Soc. Lond. A 365 (1852), 699714.Google Scholar
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.Google Scholar
Baars, W. J., Squire, D. T., Talluru, K. M., Abbassi, M. R., Hutchins, N. & Marusic, I. 2016 Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp. Fluids 57 (90), 116.Google Scholar
Bandyopadhyay, P. R. 1987 Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech. 180, 231266.Google Scholar
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.CrossRefGoogle Scholar
Cenedese, A., Romano, G. P. & Di Felice, F. 1991 Experimental testing of Taylor’s hypothesis by LDA in highly turbulent flow. Exp. Fluids 11 (6), 351358.Google Scholar
Chung, D. & McKeon, B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.Google Scholar
Chung, D., Monty, J. P. & Ooi, A. 2014 An idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulence. J. Fluid Mech. 742, R3.Google Scholar
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.Google Scholar
Foss, J. & Haw, R. 1990 Transverse vorticity measurements using a compact array of four sensors. T. Heuris. Therm. Anemom. 97, 7176.Google Scholar
Foucaut, J., Carlier, J. & Stanislas, M. 2004 PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15 (6), 1046.Google Scholar
Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J. M. 2015 Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27 (2), 025111.Google Scholar
Grass, A. J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50 (02), 233255.Google Scholar
Higgins, C. W., Froidevaux, M., Simeonov, V., Vercauteren, N., Barry, C. & Parlange, M. B. 2012 The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Boundary-Layer Meteorol. 143 (2), 379391.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.Google Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.Google Scholar
Kaimal, J. C., Eversole, R. A., Lenschow, D. H., Stankov, B. B., Kahn, P. H. & Businger, J. A. 1982 Spectral characteristics of the convective boundary layer over uneven terrain. J. Atmos. Sci. 39 (5), 10981114.Google Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R. 1972 Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98 (417), 563589.Google Scholar
de Kat, R. & Ganapathisubramani, B. 2015 Frequency–wavenumber mapping in turbulent shear flows. J. Fluid Mech. 783, 166190.CrossRefGoogle Scholar
Krogstad, P.-Å & Antonia, R. A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.Google Scholar
Krogstad, P.-Å & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluids 27 (5), 450460.Google Scholar
Krogstad, P.-Å, Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough-and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.Google Scholar
Kunkel, G. J., Allen, J. J. & Smits, A. J 2007 Further support for Townsend’s Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids 19 (5), 055109.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1992 Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Phys. Fluids A 4 (7), 15211530.Google Scholar
Lin, C. C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths 10 (4), 295306.Google Scholar
Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8 (6), 10561062.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.Google Scholar
Mehdi, F., Klewicki, J. C. & White, C. M. 2013 Mean force structure and its scaling in rough-wall turbulent boundary layers. J. Fluid Mech. 731, 682712.Google Scholar
Monty, J. P., Allen, J. J., Lien, K. & Chong, M. S. 2011 Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions. Exp. Fluids 51 (6), 17551763.Google Scholar
Monty, J. P. & Chong, M. S. 2009 Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech. 633, 461474.Google Scholar
Morrill-Winter, C., Klewicki, J., Baidya, R. & Marusic, I. 2015 Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Exp. Fluids 56 (12), 114.Google Scholar
Morrill-Winter, C., Squire, D. T., Klewicki, J. C., Hutchins, N., Schultz, M. P. & Marusic, I.(2016) Turbulent stress behaviours in boundary layers over sandpaper roughness (In preparation).Google Scholar
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the k-1 law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95 (7), 074501.Google Scholar
Nickels, T. B., Marusic, I., Hafez, S., Hutchins, N. & Chong, M. S. 2007 Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc. Lond. A 365 (1852), 807822.Google Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. NASA Tech. Memo. 1292.Google Scholar
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.Google Scholar
Perry, A. E. & Li, J. D. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.CrossRefGoogle Scholar
Philip, J., Baidya, R., Hutchins, N., Monty, J. P. & Marusic, I. 2013 Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ∨- and ×-probes. Meas. Sci. Technol. 24 (11), 115302.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.Google Scholar
Romano, G. P. 1995 Analysis of two-point velocity measurements in near-wall flows. Exp. Fluids 20 (2), 6883.CrossRefGoogle Scholar
Rosenberg, B. J., Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Turbulence spectra in smooth-and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech. 731, 4663.Google Scholar
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.CrossRefGoogle Scholar
de Silva, C. M., Gnanamanickam, E. P., Atkinson, C., Buchmann, N. A., Hutchins, N., Soria, J. & Marusic, I. 2014 High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids 26 (2), 025117.CrossRefGoogle Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016a Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.Google Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016b Smooth-and rough-wall boundary layer structure from high spatial range particle image velocimetry. Phys. Rev. Fluids 1 (6), 064402.CrossRefGoogle Scholar
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014a Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.Google Scholar
Talluru, K. M., Kulandaivelu, V., Hutchins, N. & Marusic, I. 2014b A calibration technique to correct sensor drift issues in hot-wire anemometry. Meas. Sci. Technol. 25 (10), 105304.Google Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, vol. 1. Cambridge University Press.Google Scholar
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, 112.Google Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.Google Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2011 Turbulence structure in boundary layers over periodic two-and three-dimensional roughness. J. Fluid Mech. 676, 172190.Google Scholar
Wilczek, M., Stevens, R. J. A. M. & Meneveau, C. 2015 Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769, R1.Google Scholar
Wu, Y. & Christensen, K. T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.Google Scholar
Wyngaard, J. C. 1969 Spatial resolution of the vorticity meter and other hot-wire arrays. J. Phys. E: Sci. Instrum. 2 (11), 983.Google Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Taylor hypothesis and large-scale coherent structures. J. Fluid Mech. 112, 379396.CrossRefGoogle Scholar