Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T01:19:40.009Z Has data issue: false hasContentIssue false

Amplitude statistics prediction in thermoacoustics

Published online by Cambridge University Press:  04 April 2018

G. Ghirardo*
Affiliation:
Ansaldo Energia Switzerland, 36 Römerstrasse, Baden, 5400 CH, Switzerland
F. Boudy
Affiliation:
Ansaldo Energia Switzerland, 36 Römerstrasse, Baden, 5400 CH, Switzerland
M. R. Bothien
Affiliation:
Ansaldo Energia Switzerland, 36 Römerstrasse, Baden, 5400 CH, Switzerland
*
Email address for correspondence: [email protected]

Abstract

We discuss the statistics of acoustic pressure of thermoacoustic oscillations, either axial or azimuthal in nature. We derive a model where the describing functions of the fluctuating heat release rate of the flame and of the acoustic losses appear directly in the equations. The background combustion noise is assumed to be additive, and we show how one can recover, from the measurement of the acoustic pressure at the flame location, the projected describing function of the flame minus the acoustic losses. Using the same equations, one can predict the statistics of the amplitude of acoustic pressure for a certain system. The theory is then tested on an azimuthal thermoacoustic instability in an industrial annular combustor by measuring the state of the system, predicting the acoustic pressure amplitude statistics after a design change and comparing the prediction with the measured statistics after the design change has been implemented.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åbom, M. 1992 A note on the experimental determination of acoustical two-port matrices. J. Sound Vib. 155 (1), 185188.10.1016/0022-460X(92)90655-HGoogle Scholar
Acharya, V. & Lieuwen, T. 2014 Response of non-axisymmetric premixed, swirl flames to helical disturbances. In Proceedings of ASME Turbo Expo 2014, Paper no. GT2014-27059.Google Scholar
Acharya, V., Shin, D.-h. & Lieuwen, T. 2013 Premixed flames excited by helical disturbances: flame wrinkling and heat release oscillations. J. Propul. Power 29 (6), 12821291.10.2514/1.B34883Google Scholar
Bauerheim, M., Duran, I., Livebardon, T., Wang, G., Moreau, S. & Poinsot, T. 2016 Transmission and reflection of acoustic and entropy waves through a stator–rotor stage. J. Sound Vib. 374, 260278.10.1016/j.jsv.2016.03.041Google Scholar
Bellucci, V.2009 Modeling and control of gas turbine thermoacoustic pulsations. PhD thesis, TU Berlin.Google Scholar
Bellucci, V., Flohr, P., Paschereit, C. O. & Magni, F. 2004 On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines. Trans. ASME J. Engng Gas Turbines Power 126 (2), 271275.10.1115/1.1473152Google Scholar
Bellucci, V., Schuermans, B., Nowak, D., Flohr, P. & Paschereit, C. O. 2005 Thermoacoustic modeling of a gas turbine combustor equipped with acoustic dampers. J. Turbomach. 127 (2), 372379.10.1115/1.1791284Google Scholar
Bellucci, V., Schuermans, B., Paschereit, C. O. & Flohr, P. 2001 Thermoacoustic simulation of lean premixed flames using an enhanced time-lag model. In 15th AIAA Computational Fluid Dynamics Conference, Paper no. 2001-2794, pp. 17. American Institute of Aeronautics and Astronautics.Google Scholar
Bonciolini, G., Boujo, E. & Noiray, N. 2017 Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: thermoacoustic instabilities as an example. Phys. Rev. E 95 (062217), 115.Google Scholar
Botev, Z. I., Grotowski, J. F. & Kroese, D. P. 2010 Kernel density estimation via diffusion. Ann. Stat. 38 (5), 29162957.10.1214/10-AOS799Google Scholar
Bothien, M. R., Noiray, N. & Schuermans, B. 2013 A novel damping device for broadband attenuation of low-frequency combustion pulsations in gas turbines. Trans. ASME J. Engng Gas Turbines Power 136 (4), 041504.10.1115/1.4025761Google Scholar
Bothien, M. R., Noiray, N. & Schuermans, B. 2015 Analysis of azimuthal thermo-acoustic modes in annular gas turbine combustion chambers. Trans. ASME J. Engng Gas Turbines Power 137 (6), 061505.10.1115/1.4028718Google Scholar
Bothien, M. R. & Wassmer, D. 2015 Impact of density discontinuities on the resonance frequency of Helmholtz resonators. AIAA J. 53 (4), 877887.10.2514/1.J053227Google Scholar
Boudy, F., Durox, D., Schuller, T. & Candel, S. 2011a Nonlinear mode triggering in a multiple flame combustor. Proc. Combust. Inst. 33 (1), 11211128.10.1016/j.proci.2010.05.079Google Scholar
Boudy, F., Durox, D., Schuller, T., Jomaas, G. & Candel, S. 2011b Describing function analysis of limit cycles in a multiple flame combustor. Trans. ASME J. Engng Gas Turbines Power 133 (6), 061502.10.1115/1.4002275Google Scholar
Brackston, R. D., García de la Cruz, J. M., Wynn, A., Rigas, G. & Morrison, J. F. 2016 Stochastic modelling and feedback control of bistability in a turbulent bluff body wake. J. Fluid Mech. 802, 726749.10.1017/jfm.2016.495Google Scholar
Candel, S., Durox, D., Schuller, T., Bourgouin, J.-F. & Moeck, J. P. 2014 Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46 (1), 147173.10.1146/annurev-fluid-010313-141300Google Scholar
Chiu, H. & Summerfield, M. 1974 Theory of combustion noise. Acta Astron. 1 (7–8), 967984.10.1016/0094-5765(74)90063-0Google Scholar
Clavin, P., Kim, J. S. & Williams, F. A. 1994 Turbulence-induced noise effects on high-frequency combustion instabilities. Combust. Sci. Technol. 96, 6184.10.1080/00102209408935347Google Scholar
Crawford, J. H. I., Verriest, E. I. & Lieuwen, T. 2013 Exact statistics for linear time delayed oscillators subjected to Gaussian excitation. J. Sound Vib. 332 (22), 59295938.10.1016/j.jsv.2013.06.003Google Scholar
Crocco, L. 1969 Research on combustion instability in liquid propellant rockets. Symp. (Int.) Combust. 12 (1), 8599.10.1016/S0082-0784(69)80394-2Google Scholar
Culick, F. E. 1976 Nonlinear behavior of acoustic waves in combustion chambers, part I. Acta Astron. 3 (9–10), 715734.10.1016/0094-5765(76)90107-7Google Scholar
Culick, F. E.1988 Combustion instabilities in liquid-fueled propulsion systems – an overview. NATO Tech. Rep. 450.Google Scholar
Culick, F. E. 2006 Unsteady Motions in Combustion Chambers for Propulsion Systems. NATO Research and Technology Organization.Google Scholar
Culick, F. E., Paparizos, L., Sterling, J. & Burnley, V. 1992 Combustion noise and combustion instabilities in propulsion systems. In AGARD Conference Proceedings 512.Google Scholar
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346, 271290.10.1017/S0022112097006484Google Scholar
Dowling, A. P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394, 5172.10.1017/S0022112099005686Google Scholar
Dowling, A. P. & Stow, S. R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.10.2514/2.6192Google Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28 (1), 765773.10.1016/S0082-0784(00)80279-9Google Scholar
Duran, I. & Moreau, S. 2013 Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190231.10.1017/jfm.2013.118Google Scholar
Duran, I. & Morgans, A. S. 2015 On the reflection and transmission of circumferential waves through nozzles. J. Fluid Mech. 773, 137153.10.1017/jfm.2015.247Google Scholar
Emmert, T., Bomberg, S. & Polifke, W. 2015 Intrinsic thermoacoustic instability of premixed flames. Combust. Flame 162 (1), 7585.10.1016/j.combustflame.2014.06.008Google Scholar
Fanaca, D., Alemela, P. R., Hirsch, C. & Sattelmayer, T. 2010 Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. Trans. ASME J. Engng Gas Turbines Power 132 (7), 071502.10.1115/1.4000120Google Scholar
Fleifil, M., Annaswamy, A. M., Ghoneim, Z. A. & Ghoniem, A. F. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106 (4), 487510.10.1016/0010-2180(96)00049-1Google Scholar
Gelb, A. & Vander Velde, W. 1968 Multiple Input Describing Functions and Nonlinear System Design. McGraw-Hill Book.Google Scholar
Ghirardo, G., Ćosić, B., Juniper, M. P. & Moeck, J. P. 2015 State-space realization of a describing function. Nonlinear Dyn. 82 (1–2), 928.10.1007/s11071-015-2134-xGoogle Scholar
Ghirardo, G. & Juniper, M. P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469 (2157), 20130232.10.1098/rspa.2013.0232Google Scholar
Ghirardo, G., Juniper, M. P. & Bothien, M. R. 2017 The effect of the flame phase on thermoacoustic instabilities. Combust. Flame 187, 165184.10.1016/j.combustflame.2017.09.007Google Scholar
Ghirardo, G., Juniper, M. P. & Moeck, J. P. 2016 Weakly nonlinear analysis of thermoacoustic Instabilities in annular combustors. J. Fluid Mech. 805, 5287.10.1017/jfm.2016.494Google Scholar
Güthe, F., Hellat, J. & Flohr, P. 2009 The reheat concept: the proven pathway to ultralow emissions and high efficiency and flexibility. Trans. ASME J. Engng Gas Turbines Power 131 (2), 021503.10.1115/1.2836613Google Scholar
Hauser, M., Lorenz, M. & Sattelmayer, T. 2011 Influence of transversal acoustic excitation of the burner approach flow on the flame structure. Trans. ASME J. Engng Gas Turbines Power 133 (4), 041501.10.1115/1.4002175Google Scholar
Hedge, U. G., Reuter, D. M. & Zinn, B. T. 1987 Sound generation by ducted flames. AIAA J. 26 (5), 532537.Google Scholar
Hoeijmakers, M., Kornilov, V., Lopez Arteaga, I., de Goey, P. & Nijmeijer, H. 2014 Intrinsic instability of flame acoustic coupling. Combust. Flame 161 (11), 28602867.10.1016/j.combustflame.2014.05.009Google Scholar
Hummel, T., Berger, F., Schuermans, B. & Sattelmayer, T. 2016 Theory and modeling of non-degenerate transversal thermoacoustic limit cycle oscillations. In International Symposium: Thermoacoustic Instabilities in Gas Turbines and Rocket Engines, 30 May–2 June 2016 Munich, DE, pp. 113.Google Scholar
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22, 023129.10.1063/1.4718725Google Scholar
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.10.1017/jfm.2012.463Google Scholar
Krebs, W., Flohr, P., Prade, B. & Hoffmann, S. 2002 Thermoacoustic stability chart for high-intensity gas turbine combustion systems. Combust. Sci. Technol. 174 (7), 99128.10.1080/00102200208984089Google Scholar
Kulkarni, R., Bunkute, B., Biagioli, F., Duesing, M. & Polifke, W. 2014 Large eddy simulation of ALSTOM’s reheat combustor using tabulated chemistry and stochastic fields – combustion model. In Proceedings of ASME Turbo Expo 2014, Paper no. GT2014-26053, pp. 19. ASME.Google Scholar
Laera, D., Campa, G. & Camporeale, S. M. 2017 A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors. Appl. Energy 187, 216227.10.1016/j.apenergy.2016.10.124Google Scholar
Lieuwen, T. 2001a Investigation of the statistical characteristics of pressure oscillations in an unstable gas turbine combustor. In 39th AIAA Aerospace Sciences Meeting and Exhibit, Paper no. AIAA-01-0487, pp. 08. AIAA.Google Scholar
Lieuwen, T. 2001b Phase drift characteristics of self-excited, combustion-driven oscillations. J. Sound Vib. 242 (5), 893905.10.1006/jsvi.2000.3395Google Scholar
Lieuwen, T. 2001c Theoretical investigation of unsteady flow interactions with a premixed planar flame. J. Fluid Mech. 435, 289303.10.1017/S0022112001003780Google Scholar
Lieuwen, T. 2002 Experimental investigation of limit cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18 (1), 6167.10.2514/2.5898Google Scholar
Lieuwen, T. 2003a Modeling premixed combustion–acoustic wave interactions: a review. J. Propul. Power 19 (5), 765781.10.2514/2.6193Google Scholar
Lieuwen, T. 2003b Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260 (1), 317.10.1016/S0022-460X(02)00895-7Google Scholar
Lieuwen, T. & Yang, V. 2005 Combustion Instabilities In Gas Turbine Engines. American Institute of Aeronautics and Astronautics.Google Scholar
Lieuwen, T. & Zinn, B. T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Intl Symp. Combust. 27 (2), 18091816.10.1016/S0082-0784(98)80022-2Google Scholar
Lieuwen, T. & Zinn, B. T. 2000 Investigation of cycle-to-cycle variability in an unstable gas turbine combustor. In Proceedings of ASME Turbo Expo 2000, Paper no. 2000-GT-81, pp. 19. ASME.Google Scholar
Lin, Y.-K. 1967 Probabilistic Theory of Structural Dynamics. Krieger Pub Co.Google Scholar
Marble, F. E. & Candel, S. 1977 Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55 (2), 225243.10.1016/0022-460X(77)90596-XGoogle Scholar
Mejia, D., Miguel-Brebion, M. & Selle, L. 2016 On the experimental determination of growth and damping rates for combustion instabilities. Combust. Flame 169, 287296.10.1016/j.combustflame.2016.05.004Google Scholar
Moeck, J. P., Bothien, M. R., Schimek, S., Lacarelle, A. & Paschereit, C. O. 2008 Subcritical thermoacoustic instabilities in a premixed combustor. In 14th AIAA/CEAS Aeroacoustics Conference, Paper no. AIAA-2008-2946, pp. 218. AIAA.Google Scholar
Morse, P. M. & Feshback, H. 1953a Methods of Theoretical Physics, vol. 1. McGraw-Hill.Google Scholar
Morse, P. M. & Feshback, H. 1953b Methods of Theoretical Physics, vol. 2. McGraw-Hill.Google Scholar
Motheau, E., Nicoud, F. & Poinsot, T. 2014 Mixed acoustic entropy combustion instabilities in gas turbines. J. Fluid Mech. 749, 542576.10.1017/jfm.2014.245Google Scholar
Nicoud, F., Benoit, L., Sensiau, C. & Poinsot, T. 2007 Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 45 (2), 426441.10.2514/1.24933Google Scholar
Noiray, N. 2016 Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors. Trans. ASME J. Engng Gas Turbines Power 139 (4), 041503.Google Scholar
Noiray, N. & Denisov, A. 2017 A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series. Proc. Combust. Inst. 36 (3), 38433850.10.1016/j.proci.2016.06.092Google Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615 (2008), 139167.10.1017/S0022112008003613Google Scholar
Noiray, N. & Schuermans, B. 2013a Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Intl J. Non-Linear Mech. 50, 152163.10.1016/j.ijnonlinmec.2012.11.008Google Scholar
Noiray, N. & Schuermans, B. 2013b On the dynamic nature of azimuthal thermoacoustic modes in annular gas turbine combustion chambers. Proc. R. Soc. Lond. A 469 (2151), 20120535.10.1098/rspa.2012.0535Google Scholar
O’Connor, J. & Acharya, V. 2013 Development of a flame transfer function framework for transversely forced flames. In Proceedings of ASME Turbo Expo 2013, Paper no. GT2013-95900.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2010 The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157 (9), 16981717.10.1016/j.combustflame.2010.02.011Google Scholar
Paschereit, C. O. & Polifke, W. 1998 Investigation of the thermoacoustic characteristics of a lean premixed gas turbine burner. In International Gas Turbine and Aeroengine Congress and Exhibition, Paper no. 98-GT-582, pp. 110. ASME.Google Scholar
Poinsot, T. 2016 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36 (1), 128.10.1016/j.proci.2016.05.007Google Scholar
Polifke, W., Kopitz, J. & Serbanoviv, A. 2001 Impact of the fuel time lag distribution in elliptical premix nozzles on combustion stability. In Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference, Paper no. 2001-2104, pp. 111. American Institute of Aeronautics and Astronautics.Google Scholar
Preetham, S. H. & Lieuwen, T. 2008 Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power 24 (6), 13901402.Google Scholar
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.10.1017/S0022112009990681Google Scholar
Rigas, G., Morgans, A. S., Brackston, R. D. & Morrison, J. F. 2015 Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. J. Fluid Mech. 778, R2.10.1017/jfm.2015.390Google Scholar
Rigas, G., Morgans, A. S. & Morrison, J. F. 2017 Weakly nonlinear modelling of a forced turbulent axisymmetric wake. J. Fluid Mech. 814, 570591.10.1017/jfm.2017.32Google Scholar
Roberts, J. B. & Spanos, P. 1986 Stochastic averaging: an approximate method of solving random vibration problems. Intl J. Non-Linear Mech. 21, 111134.10.1016/0020-7462(86)90025-9Google Scholar
Saurabh, A., Moeck, J. P. & Paschereit, C. O. 2017 Swirl flame response to simultaneous axial and transverse velocity fluctuations. Trans. ASME J. Engng Gas Turbines Power 139 (6), 061502.10.1115/1.4035231Google Scholar
Saurabh, A. & Paschereit, C. O. 2017 Dynamics of premixed swirl flames under the influence of transverse acoustic fluctuations. Combust. Flame 182, 298312.10.1016/j.combustflame.2017.04.014Google Scholar
Saurabh, A., Steinert, R., Moeck, J. P. & Paschereit, C. O. 2014 Swirl flame response to traveling acoustic waves. In Proceedings of ASME Turbo Expo 2014, Paper no. GT2014-26829.Google Scholar
Scarinci, T. 2005 Combustion instability and its passive control: Rolls-Royce aeroderivative engine experience. In Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (ed. Lieuwen, T. C. & Yang, V.), chap. 4, pp. 6588. American Institute of Aeronautics and Astronautics.Google Scholar
Scarpato, A., Zander, L., Kulkarni, R. & Schuermans, B. 2016 Identification of multi-parameter flame transfer function for a reheat combustor. In Proceedings of ASME Turbo Expo 2016, Paper no. GT2016-57699, pp. 19. ASME.Google Scholar
Schuermans, B., Bellucci, V., Güthe, F., Meili, F., Flohr, P. & Paschereit, C. O. 2004 A detailed analysis of thermoacoustic interaction mechanisms in a turbulent premixed flame. In Proceedings of ASME Turbo Expo 2004, Paper no. GT2004-53831, pp. 539551.Google Scholar
Schuermans, B., Paschereit, C. O. & Monkewitz, P. 2006 Non-linear combustion instabilities in annular gas-turbine combustors. In 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper no. AIAA-2006-0549, pp. 112. American Institute of Aeronautics and Astronautics.Google Scholar
Seybert, A. F. & Ross, D. F. 1977 Experimental determination of acoustic properties using a two-microphone random-excitation technique. J. Acoust. Soc. Am. 61 (5), 13621370.10.1121/1.381403Google Scholar
Shimazaki, H. & Shinomoto, S. 2007 A method for selecting the bin size of a time histogram. Neural Comput. 19 (6), 15031527.10.1162/neco.2007.19.6.1503Google Scholar
Silva, C. F., Emmert, T., Jaensch, S. & Polifke, W. 2015 Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame. Combust. Flame 162 (9), 33703378.10.1016/j.combustflame.2015.06.003Google Scholar
Singla, G., Noiray, N. & Schuermans, B. 2012 Combustion dynamics validation of an annular reheat combustor. In Proceedings of ASME Turbo expo 2012, Paper no. GT2012-68684, pp. 19.Google Scholar
Stadlmair, N., Wagner, M., Hirsch, C. & Sattelmayer, T. 2015 Experimentally determining the acoustic damping rates of a combustor with a swirl stabilized lean premixed flame. In Proceedings of ASME Turbo Expo 2015, Paper no. GT2015-42683, pp. 110. ASME.Google Scholar
Stow, S. R., Dowling, A. P. & Hynes, T. P. 2002 Reflection of circumferential modes in a choked nozzle. J. Fluid Mech. 467, 215239.10.1017/S0022112002001428Google Scholar
Strahle, W. C. 1971 On combustion generated noise. J. Fluid Mech. 49 (02), 399414.10.1017/S0022112071002167Google Scholar
Strahle, W. C. 1972 Some results in combustion generated noise. J. Sound Vib. 23 (1), 113125.10.1016/0022-460X(72)90792-4Google Scholar
Wagner, M., Christoph, J. & Sattelmayer, T. 2013 Comparison of the accuracy of time-domain measurement methods for combustor damping. In Proceedings of ASME Turbo Expo 2003, Paper no. GT2013-94844, vol. 1A, pp. 111. ASME.Google Scholar
Walz, G., Krebs, W., Hoffmann, S. & Judith, H. 2002 Detailed analysis of the acoustic mode shapes of an annular combustion chamber. Trans. ASME J. Engng Gas Turbines Power 124 (1), 39.10.1115/1.1396346Google Scholar
Worth, N. A. & Dawson, J. R. 2013 Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160, 24762489.10.1016/j.combustflame.2013.04.031Google Scholar
Yang, Y., Noiray, N., Scarpato, A., Schulz, O., Düsing, K. M. & Bothien, M. R. 2015 Numerical analysis of the dynamic flame response in Alstom reheat combustion systems. In Proceedings of ASME Turbo Expo 2015, Paper no. GT2015-42622, pp. 111. ASME.Google Scholar
Zahn, M., Schulze, M., Hirsch, C. & Sattelmayer, T. 2016 Impact of quarter wave tube arrangement on damping of azimuthal modes. In Proceedings of ASME Turbo Expo 2016, Paper no. GT2016-56450. ASME.Google Scholar
Zinn, B. T. & Lores, M. E. 1971 Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets. Combust. Sci. Technol. 4 (1), 269278.10.1080/00102207108952493Google Scholar