Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T00:34:23.619Z Has data issue: false hasContentIssue false

Added mass energy recovery of octopus-inspired shape change

Published online by Cambridge University Press:  24 November 2016

S. C. Steele*
Affiliation:
Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
G. D. Weymouth
Affiliation:
Southampton Marine and Maritime Institute, University of Southampton, University Rd, Southampton SO17 1BJ, UK
M. S. Triantafyllou
Affiliation:
Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

Dynamic shape change of the octopus mantle during fast jet escape manoeuvres results in added mass energy recovery to the energetic advantage of the octopus, giving escape thrust and speed additional to that due to jetting alone. We show through numerical simulations and experimental validation of overall wake behaviour, that the success of the energy recovery is highly dependent on shrinking speed and Reynolds number, with secondary dependence on shape considerations and shrinking amplitude. The added mass energy recovery ratio $\unicode[STIX]{x1D702}_{ma}$, which measures momentum recovery in relation to the maximum momentum recovery possible in an ideal flow, increases with increasing the non-dimensional shrinking parameter $\unicode[STIX]{x1D70E}^{\ast }={\dot{a}}_{max}/U\sqrt{\mathit{Re }_{0}}$, where ${\dot{a}}_{max}$ is the maximum shrinking speed, $U$ is the characteristic flow velocity and $\sqrt{\mathit{Re }_{0}}$ is the Reynolds number at the beginning of the shrinking motion. An estimated threshold $\unicode[STIX]{x1D70E}^{\ast }\approx 10$ determines whether or not enough energy is recovered to the body to produce net thrust. Since there is a region of high transition for $10<\unicode[STIX]{x1D70E}^{\ast }<30$ where the recovery performance varies widely and for $\unicode[STIX]{x1D70E}^{\ast }>100$ added mass energy is recovered at diminishing returns, we propose a design criterion for shrinking bodies to be in the range of $50<\unicode[STIX]{x1D70E}^{\ast }<100$, resulting in 61–82 % energy recovery.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Childress, S., Spagnolie, S. E. & Tokieda, T. 2011 A bug on a raft: recoil locomotion in a viscous fluid. J. Fluid Mech. 669, 527556.CrossRefGoogle Scholar
Gemmell, B. J., Costello, J. H., Colin, S. P., Stewart, C. J., Dabiri, J. O., Tafti, D. & Priya, S. 2013 Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc. Natl Acad. Sci. USA 110 (44), 1790417909.Google Scholar
Gosline, J. M. & Demont, M. E. 1985 Jet-propelled swimming in squids. Sci. Am. 252 (1), 96103.CrossRefGoogle Scholar
Head, M. R.1959 Approximate calculations of the laminar boundary layer with suction, with particular reference to the suction requirements for boundary layer stability on aerofoils of different thickness/chord ratios, Res. Council Rep. and Memo. 3124.Google Scholar
Kanso, E., Marsden, J. E., Rowley, C. W. & Melli-Huber, J. B. 2005 Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15 (4), 255289.CrossRefGoogle Scholar
Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488526.Google Scholar
Linden, P. F. & Turner, J. S. 2004 Optimal vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. B 271 (1539), 647653.CrossRefGoogle ScholarPubMed
Lugt, H. J. 1983 Vortex Flow in Nature and Technology. Wiley.Google Scholar
Maertens, A. P. & Weymouth, G. D. 2015 Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers. Comput. Meth. Appl. Mech. Engng 283, 106129.CrossRefGoogle Scholar
Moslemi, A. A. & Krueger, P. S. 2011 The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspir. Biomim. 6 (2), 026001.Google Scholar
Prandtl, L. 1935 The mechanics of viscous fluids. In Aerodynamic Theory, vol. III. Springer.Google Scholar
Preston, J. H.1948 The boundary-layer flow over a permeable surface through which suction is applied. British Aerospace Research Council 2244. HM Stationery Office.Google Scholar
Saffman, P. G. 1967 The self-propulsion of a deformable body in a perfect fluid. J. Fluid Mech. 28 (02), 385389.CrossRefGoogle Scholar
Spagnolie, S. E. & Shelley, M. J. 2009 Shape-changing bodies in fluid: hovering, ratcheting, and bursting. Phys. Fluids 21 (1), 013103.Google Scholar
Thompson, J. T. & Kier, W. M. 2001 Ontogenetic changes in mantle kinematics during escape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson, 1830. Biol. Bull. 201 (2), 154166.Google Scholar
Weymouth, G. D. & Yue, D. K. P. 2011 Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems. J. Comput. Phys. 230 (16), 62336247.Google Scholar
Weymouth, G. D., Subramaniam, V. & Triantafyllou, M. S. 2015 Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspir. Biomim. 10 (1), 016016.CrossRefGoogle ScholarPubMed
Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a shrinking cylinder. J. Fluid Mech. 702, 470487.Google Scholar
Weymouth, G. D. & Triantafyllou, M. S. 2013 Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367385.Google Scholar
Wibawa, M. S., Steele, S. C., Dahl, J. M., Rival, D. E., Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a vanishing wing. J. Fluid Mech. 695, 112134.CrossRefGoogle Scholar