Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T02:34:33.480Z Has data issue: false hasContentIssue false

Respiratory viral infections during pregnancy: effects of SARS-CoV-2 and other related viruses over the offspring

Published online by Cambridge University Press:  02 February 2021

Claudia Riedel
Affiliation:
Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile Millennium Institute of Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Andres Bello University, Santiago, Chile
Juan Carlos Rivera
Affiliation:
Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile Millennium Institute of Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Andres Bello University, Santiago, Chile
Gisela Canedo-Marroquín
Affiliation:
Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
Alexis M. Kalergis
Affiliation:
Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile Millennium Institute of Immunology and Immunotherapy, Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
Ma. Cecilia Opazo*
Affiliation:
Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile Millennium Institute of Immunology and Immunotherapy Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Andres Bello University, Santiago, Chile
*
Address for correspondence: Ma. Cecilia Opazo, República 330, 2do piso, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile. Email: [email protected]; [email protected]

Abstract

Little is known about the consequences of viral infection for pregnant woman or for the fetus. This issue became important with the appearance of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The infection with SARS-CoV-2 causes a respiratory syndrome known as COVID-19. The fast spreading around the world and the fact that without a treatment or vaccine humans are completely exposed, converts emerging viral diseases in a significant risk for pregnant women and their infants. At this time, during SARS-CoV-2 pandemics pregnant women are not considered as a risk population and little is known about the effects of viral infections over the offspring although the amount of emerging evidence showing detrimental effects for the mother and the fetus. This issue highlights the importance to understand the effects of viral infections during pregnancy. In this work, we analyze the effects of viral infections, like SARS-CoV-2 and other related viruses during pregnancy over the mother and the consequences for the offspring.

Type
Review
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mor, G, Cardenas, I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010; 63, 425433.CrossRefGoogle ScholarPubMed
Silasi, M, Cardenas, I, Racicot, K, Kwon, J-Y, Aldo, P, Mor, G. Viral infections during pregnancy. Am J Reprod Immunol. 2015; 73, 199213.CrossRefGoogle ScholarPubMed
Liu, H, Wang, L-L, Zhao, S-J, Kwak-Kim, J, Mor, G, Liao, A-H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. 2020; 139, 103122.CrossRefGoogle ScholarPubMed
Covićn, C, Retamal-Díaz, A, Bueno, SM, Kalergis, AM. Could BCG Vaccination Induce Protective Trained Immunity for SARS-CoV-2? Front Immunol. 2020 May 8;11:970. doi: 10.3389/fimmu.2020.00970 CrossRefGoogle Scholar
Canedo-Marroquín, G, Saavedra, F, Andrade, CA, Berrios, RV, Rodríguez-Guilarte, L, Opazo, MC, Riedel, CA, Kalergis, AM. SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Front Immunol. 2020 Dec 11;11:569760. doi: 10.3389/fimmu.2020.569760.CrossRefGoogle Scholar
WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/. (Accessed: 11th June 2020)Google Scholar
Bar-On, YM, Flamholz, A, Phillips, R, Milo, R. Sars-cov-2 (Covid-19) by the numbers. eLife. 2020; 9.CrossRefGoogle ScholarPubMed
Singhal, T. A review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020; 87, 281286.CrossRefGoogle Scholar
Yu, Y, Chen, P. Coronavirus disease 2019 (COVID-19) in neonates and children from China: a review. Front Pediatr. 2020; 8, 287. doi: 10.3389/fped.2020.00287 CrossRefGoogle ScholarPubMed
Mor, G, Aldo, P, Alvero, AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017; 17, 469482.CrossRefGoogle ScholarPubMed
Delahoy, MJ, Whitaker, M, O’Halloran, A, et al. Characteristics and Maternal and Birth Outcomes of Hospitalized Pregnant Women with Laboratory-Confirmed COVID-19 - COVID-NET, 13 States, March 1-August 22, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69, 13471354.CrossRefGoogle ScholarPubMed
Li, N, Han, L, Peng, M, et al. Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa352 Google ScholarPubMed
Segars, J, Katler, Q, Mcqueen, DB, et al. Prior and novel coronaviruses, Coronavirus Disease 2019 (COVID-19), and human reproduction: what is known? Fertil Steril. 2020; 113, 11401149.CrossRefGoogle ScholarPubMed
Chen, L, Li, Q, Zheng, D, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med. 2020; 382, e100.CrossRefGoogle ScholarPubMed
Yang, H, Hu, B, Zhan, S, Yang, L, Xiong, G. Effects of SARS-CoV-2 infection on pregnant women and their infants: a retrospective study in Wuhan, China. Arch Pathol Lab Med. 2020. doi: 10.5858/arpa.2020-0232-sa CrossRefGoogle ScholarPubMed
Özdemir, H, Emsen, A, Türk Daği, H, Artaç, H. Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children. Turk J Med Sci. 2019; 49, 499505.Google Scholar
Palmeira, P, Quinello, C, Ucia Silveira-Lessa, AL, Zago, CA, Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012; 2012, 13.CrossRefGoogle ScholarPubMed
Lamouroux, A, Attie-Bitach, T, Martinovic, J, Leruez-Ville, M, Ville, Y. Evidence for and against vertical transmission for severe acute respiratory syndrome coronavirus 2. Am J Obstet Gynecol. 2020; 223, 91.e191.e4.CrossRefGoogle ScholarPubMed
Fenizia, C, Biasin, M, Cetin, I, et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun. 2020; 11, 5128.CrossRefGoogle ScholarPubMed
Dong, L, Tian, J, He, S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020; 323, 18461848.Google ScholarPubMed
Zeng, H, Xu, C, Fan, J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020; 323, 18481849.Google ScholarPubMed
Zhu, H, Wang, L, Fang, C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020; 9, 5160.CrossRefGoogle ScholarPubMed
Li, N, Han, L, Peng, M, et al. Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. Clin Infect Dis. 2020; 71(16), 20352041. doi: 10.1093/cid/ciaa352 CrossRefGoogle ScholarPubMed
Trippella, G, Ciarcià, M, Ferrari, M, et al. COVID-19 in pregnant women and neonates: a systematic review of the literature with quality assessment of the studies. Pathogens. 2020; 9, 485.CrossRefGoogle ScholarPubMed
Chen, Y, Peng, H, Wang, L, et al. Infants born to mothers with a new Coronavirus (COVID-19). Front Pediatr. 2020; 8, 104.CrossRefGoogle Scholar
Yu, N, Li, W, Kang, Q, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. 2020. doi: 10.1016/S1473-3099(20)30176-6 CrossRefGoogle Scholar
Liu, P., Zheng, J, Yang, P, et al. The immunologic status of newborns born to SARS-CoV-2-infected mothers in Wuhan, China. J Allergy Clin Immunol. 2020. doi: 10.1016/j.jaci.2020.04.038 CrossRefGoogle ScholarPubMed
Delanghe, JR, Speeckaert, MM. Translational research and biomarkers in neonatal sepsis. Clin Chim Acta. 2015; 451, 4664.CrossRefGoogle ScholarPubMed
Lohman-Payne, B, Gabriel, B, Park, S, et al. HIV-exposed uninfected infants: elevated cord blood Interleukin 8 (IL-8) is significantly associated with maternal HIV infection and systemic IL-8 in a Kenyan cohort. Clin Transl Med. 2018; 7, 26.CrossRefGoogle Scholar
Yockey, LJ, Iwasaki, A. Interferons and Proinflammatory Cytokines in pregnancy and fetal development. Immunity. 2018; 49, 397412.CrossRefGoogle ScholarPubMed
Lee, YC, Lin, SJ Neonatal natural killer cell function: relevance to antiviral immune defense. Clin Dev Immunol. 2013; 2013, 427696. doi: 10.1155/2013/427696 CrossRefGoogle ScholarPubMed
Smith, C, Jalbert, E, de Almeida, V, et al. Altered natural killer cell function in HIV-exposed uninfected infants. Front Immunol. 2017; 8, 470. doi: 10.3389/fimmu.2017.00470 CrossRefGoogle ScholarPubMed
Ackermann, M, Verleden, SE, Kuehnel, M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020; 383, 120128.CrossRefGoogle ScholarPubMed
Varga, Z, Flammer, AJ, Steiger, P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395, 14171418.CrossRefGoogle ScholarPubMed
Hoffmann, M, Kleine-Weber, H, Schroeder, S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181, 271280.e8.CrossRefGoogle ScholarPubMed
Colmenero, I, Santonja, C, Alonso-Riaño, M, et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol. 2020; 183, 729737.CrossRefGoogle ScholarPubMed
Voelkel, NF, Douglas, IS, Nicolls, M. Angiogenesis in chronic lung disease. Chest. 2007; 131, 874879.CrossRefGoogle ScholarPubMed
Racicot, K, Mor, G. Risks associated with viral infections during pregnancy. J Clin Invest. 2017; 127, 15911599.CrossRefGoogle ScholarPubMed
Shivhare, SB, Bulmer, JN, Lash, GE. Immunity at the Maternal-Fetal Interface. in Mucosal Immunology: Fourth Edition. 2015; 2–2, 2231–2250 (Elsevier Inc.,).CrossRefGoogle Scholar
Ander, SE, Diamond, MS, Coyne, CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019; 4.CrossRefGoogle ScholarPubMed
Hazan, AD, Smith, SD, Jones, RL, et al. Vascular-Leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro. Am J Pathol. 2010; 177, 10171030.CrossRefGoogle ScholarPubMed
Vishnyakova, P, Elchaninov, A, Fatkhudinov, T, Sukhikh, G. Role of the Monocyte-Macrophage System in Normal Pregnancy and Preeclampsia. Int J Mol Sci. 2019; 20, 3695. doi: 10.3390/ijms20153695 CrossRefGoogle ScholarPubMed
Macri, C, Pang, ES, Patton, T, O’Keeffe, M. Dendritic cell subsets. Semin Cell Dev Biol. 2018; 84, 1121.CrossRefGoogle ScholarPubMed
Tagliani, E, Erlebacher, A. Dendritic cell function at the maternal-fetal interface. Expert Rev Clin Immunol. 2011; 7, 593602.CrossRefGoogle ScholarPubMed
Erlebacher, A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013; 31, 387411.CrossRefGoogle ScholarPubMed
Sasaki, Y, Darmochwal-Kolarz, D, Suzuki, D, et al. Proportion of peripheral blood and decidual CD4+ CD25 bright regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007; 149, 139145.CrossRefGoogle ScholarPubMed
Solano, ME. Decidual immune cells: guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol. 2019; 60, 316.CrossRefGoogle ScholarPubMed
León-Juárez, M, Martínez-Castillo, M, González-García, LD, et al. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog Dis. 2017; 75, ftx093. doi: 10.1093/femspd/ftx093 CrossRefGoogle ScholarPubMed
Koi, H, Zhang, J, Parry, S. The mechanisms of placental viral infection. Ann N Y Acad Sci. 2001; 943, 148156 (New York Academy of Sciences).CrossRefGoogle ScholarPubMed
Karimi-Zarchi, M, Neamatzadeh, H, Dastgheib, A, et al. Vertical transmission of Coronavirus Disease 19 (COVID-19) from infected pregnant mothers to neonates: a review. Fetal Pediatr Pathol. 2020; 39.CrossRefGoogle ScholarPubMed
Schwartz, DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med. 2020. doi: 10.5858/arpa.2020-0901-SA CrossRefGoogle ScholarPubMed
Goff, E, Griffith, BP, Booss, J. Delayed amplification of cytomegalovirus infection in the placenta and maternal tissues during late gestation. Am J Obstet Gynecol. 1987; 156, 12651270.CrossRefGoogle ScholarPubMed
Wang, C, Zhou, Y-H, Yang, H-X, Poon, LC. Intrauterine vertical transmission of SARS-CoV-2: what we know so far. Ultrasound Obstet Gynecol. 2020; 55, 724725.CrossRefGoogle ScholarPubMed
Valdés, G, Neves, L, Anton, L, et al. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 2006; 27, 200207.CrossRefGoogle ScholarPubMed
Li, M, Chen, L, Zhang, J, Xiong, C, Li, X. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. 2020. doi: 10.1371/journal.pone.0230295 CrossRefGoogle Scholar
Li, Y, Zhao, R, Zheng, S, et al. Lack of vertical transmission of severe acute respiratory syndrome Coronavirus 2, China. Emerg Infect Dis. 2020; 26, 13351336.CrossRefGoogle ScholarPubMed
Guan, WJ, Chen, RC, Zhong, NS. Strategies for the prevention and management of coronavirus disease 2019. Eur Res J. 2020; 55.CrossRefGoogle ScholarPubMed
Piedimonte, G, Walton, C, Samsell, L. Vertical transmission of respiratory syncytial virus modulates pre- and postnatal innervation and reactivity of Rat Airways. PLoSONE. 2013; 8.CrossRefGoogle ScholarPubMed
Perez-Muñoz, ME, Arrieta, MC, Ramer-Tait, AE, Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 5.CrossRefGoogle ScholarPubMed
Li, AM, Ng, PC. Severe acute respiratory syndrome (SARS) in neonates and children. Arch Dis Child Fetal Neonatal Ed. 2005; 90.CrossRefGoogle Scholar
Ng, PC, Leung, C, Chiu, WK, Wong, SF, Hon, EKL. SARS in newborns and children. Biol Neonate. 2004; 85, 293298. (Biol Neonate).CrossRefGoogle ScholarPubMed
Wong, SF, Chow, KM, Leung, TN, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol. 2004; 191, 292297.CrossRefGoogle ScholarPubMed
Payne, DC, Iblan, I, Alqasrawi, S, et al. Stillbirth during infection with Middle East Respiratory Syndrome Coronavirus. doi: 10.1093/infdis/jiu068 CrossRefGoogle Scholar
de Souza Silva, GA, da Silva, SP, da Costa, M, et al. SARS-CoV, MERS-CoV and SARS-CoV-2 infections in pregnancy and fetal development. J Gynecol Obstet Hum Reprod. 2020; 101846. doi: 10.1016/j.jogoh.2020.101846 CrossRefGoogle ScholarPubMed
Jeong, SY, Sung, SI, Sung, J-H, et al. MERS-CoV infection in a pregnant woman in Korea. J Korean Med Sci. 2017; 32, 17171720.CrossRefGoogle Scholar
Alserehi, H, Wali, G, Alshukairi, A, Alraddadi, B. Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome. BMC Infect Dis. 2016; 16.CrossRefGoogle ScholarPubMed
Alfaraj, SH, Al-Tawfiq, JA, Memish, ZA Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: report of two cases & review of the literature. J Microbiol Immunol Infect. 2019; 52, 501503.CrossRefGoogle ScholarPubMed
Schwartz, DA, Graham, AL. Potential maternal and infant outcomes from coronavirus 2019-NCOV (SARS-CoV-2) infecting pregnant women: lessons from SARS, MERS, and other human coronavirus infections. Viruses. 2020; 12.CrossRefGoogle ScholarPubMed
Liu, S, Sha, J, Yu, Z, et al. Avian influenza virus in pregnancy. Rev Med Virol. 2016; 26, 268284.CrossRefGoogle ScholarPubMed
Liu, SL, et al. Pandemic influenza A(H1N1) 2009 virus in pregnancy. Rev Med Virol. 2013; 23, 314.CrossRefGoogle ScholarPubMed
Vásquez, RD, Chávez, V, Gamio, IE, et al. Probable vertical transmission of the influenza virus a (H1N1): Apropos of a case. Rev Peru Med Exp Salud Publica. 2010; 27, 466469.CrossRefGoogle ScholarPubMed
Takahashi, N, Kitajima, H, Kusuda, S, Morioka, I, Itabashi, K. Pandemic (H1N1) 2009 in neonates, Japan. Emerg Infect Dis. 2011; 17, 17631765.CrossRefGoogle Scholar
Gu, J, Xie, Z, Gao, Z, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet. 2007; 370, 11371145.CrossRefGoogle ScholarPubMed
Korteweg, C, Gu, J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol. 2008; 172, 11551170.CrossRefGoogle ScholarPubMed
Shu, Y, Yu, H, Li, D. Lethal avian influenza A (H5N1) infection in a pregnant woman in Anhui Province, China [1]. N Engl J Med. 2006; 354, 14211422.CrossRefGoogle Scholar
Lenahan, JL, Englund, JA, Katz, J, et al. Human metapneumovirus and other respiratory viral infections during pregnancy and birth, Nepal. Emerg Infect Dis. 2017; 23, 13411349.CrossRefGoogle ScholarPubMed
Regan, AK, Klein, NP, Langley, G, et al. Respiratory Syncytial Virus Hospitalization during pregnancy in 4 High-Income Countries for the PREVENT Group a. Clin Infect Dis. 2018; 67, 19151918. doi: 10.1093/cid/ciy439 CrossRefGoogle Scholar
Chu, HY, Katz, J, Tielsch, J, et al. Clinical presentation and birth outcomes associated with respiratory syncytial virus infection in pregnancy. PLoS ONE. 2016; 11.CrossRefGoogle ScholarPubMed
Manti, S, Cuppari, C, Lanzafame, A, et al. Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress. Pediatr Pulmonol. 2017; 52, E81E84.CrossRefGoogle Scholar
Fonceca, AM, Chopra, A, Levy, A, et al. Infective respiratory syncytial virus is present in human cord blood samples and most prevalent during winter months. PLoS ONE. 2017; 12.CrossRefGoogle ScholarPubMed
Piedimonte, G, Harford, TJ. Effects of maternal−fetal transmission of viruses and other environmental agents on lung development. Pediatr Res. 2020; 87, 420426.CrossRefGoogle ScholarPubMed