Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T14:01:07.081Z Has data issue: false hasContentIssue false

Milk fat globule membrane material in skim-milk

Published online by Cambridge University Press:  01 June 2009

F. B. P. Wooding
Affiliation:
Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, CB2 4AT

Summary

It has been claimed by Stewart, Puppione & Patton (1972) that milk is a valuable source of cell membrane in a ‘relatively pure’ state originating from shed mammary secretory cell microvilli and golgi vesicles. The morphological basis for this has been re-examined in this paper. It is shown that the vesicular and elongated membranous structures found in skim-milk are identical to structures present as part of the initial milk fat globule membrane (MFGM) of alveolar and expressed milk, and that both structures survive extraction with chloroform–methanol. It is therefore suggested that a major part of the skim-milk membrane is material shed from the freshly secreted milk fat globule and consists of a specialised derivative of the secretory cell plasmalemma, the initial MFGM.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bargmann, W., Fleischhauer, K. & Knoop, A. (1961). Zeitschrift für Zellforschung und Mikrosko pische Anatomie 53, 545.CrossRefGoogle Scholar
Bauer, H. (1972). Journal of Dairy Science 55, 1375.CrossRefGoogle Scholar
Buchheim, W. (1970). Naturwissenschaften 57, 672.CrossRefGoogle Scholar
Ceccarelli, B., Hurlbut, W. P. & Mauro, A. (1973). Journal of Cell Biology 57, 499.CrossRefGoogle Scholar
Cunningham, W. P. & Crane, F. L. (1966). Experimental Cell Research 44, 31.CrossRefGoogle Scholar
Feldman, J. D. (1961). Laboratory Investigation 10, 238.Google Scholar
Forstner, G. G., Sabesin, S. M. & Isselbacher, K. J. (1968). Biochemical Journal 106, 381.CrossRefGoogle Scholar
Geuze, J. J. & Poort, C. (1973). Journal of Cell Biology 57, 159.CrossRefGoogle Scholar
Heuser, J. E. & Reese, T. S. (1973). Journal of Cell Biology 57, 315.CrossRefGoogle Scholar
Keenan, T. W., Morré, D. J., Olson, D. E., Yunghans, W. N. & Patton, S. (1970). Journal of Cell Biology 44, 80.CrossRefGoogle Scholar
Keenan, T. W., Olson, D. E. & Mollenhauer, H. H. (1971). Journal of Dairy Science 54, 295.CrossRefGoogle Scholar
Morton, R. K. (1954). Biochemical Journal 57, 231.CrossRefGoogle Scholar
Patton, S. & Keenan, T. W. (1971). Lipids 6, 58.CrossRefGoogle Scholar
Plantz, P. E, & Patton, S. (1973). Biochimica et Biophysica Acta 291, 51.CrossRefGoogle Scholar
Plantz, P. E., Patton, S. & Keenan, T. W. (1973). Journal of Dairy Science 56, 978.CrossRefGoogle Scholar
Stein, O. & Stein, Y. (1967). Journal of Cell Biology 34, 251.CrossRefGoogle Scholar
Stewart, P. S., Puppione, D. L. & Patton, S. (1972). Zeitschrift für Zellforschung und Mikroskopische Anatomie 123, 161.CrossRefGoogle Scholar
Stockinger, L. & Zarzicki, J. (1962). Zeitschrift für Zellforschung und Mikroskopische Anatomie 57, 106.CrossRefGoogle Scholar
Wilfong, R. F. & Neville, D. M. Jr (1970). Journal of Biological Chemistry 245, 6106.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 a). Journal of Cell Science 9, 805.CrossRefGoogle Scholar
Wooding, F. B. P. (1971 b). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Wooding, F. B. P. (1972). Experientia 28, 1077.CrossRefGoogle Scholar