Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:41:30.389Z Has data issue: false hasContentIssue false

Interspecies variation in milk composition among horses, zebras and asses (Perissodactyla: Equidae)

Published online by Cambridge University Press:  01 June 2009

Olav T. Oftedal
Affiliation:
National Zoological Park, Smithsonian Institution, Washington, DC 20008, USA
Robert Jenness
Affiliation:
Department of Biochemistry, University of Minnesota, St. Paul, MN 55108, USA

Summary

Milk samples of four species of wild equids (onager, Equus hemionus onager; mountain zebra, E. zebra hartmannae; plains zebra, E. burchelli; Przewalski horse, E. caballus przewalskii) and two domesticated equids (ass, E. asinus; pony, E. caballus) were analysed. At mid to late lactation the milks of all species were very similar, containing on average 10–12% total solids, 1–2% fat, 1·6–1·8% true protein, 6–7% ‘lactose’, 0·3–0·5% ash, 0·08–0·12% calcium, 0·04–0·07% phosphorus and a calculated energy content of 2·0–2·4 kJ/g. Milk samples collected in the first 2 weeks after birth showed elevated levels of total solids and protein, and some had reduced ‘lactose’ levels, but there were no observable trends in milk composition during mid to late lactation (1–12 months post partum). It was concluded that these closely related species produce milks that are nearly identical in gross composition and that the domestic horse is a representative model for the study of equid lactation.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anantakrishnan, C. P. 1941 Studies on ass's milk. Composition. Journal of Dairy Research 12 119130.CrossRefGoogle Scholar
Antila, V., Kylå-Siurola, A.-I., Uusi-Rauva, E. & Antila, M. 1971 [An investigation of Finnish nares' milk]. Suomen Kemistilehti B44 193196Google Scholar
Belec, J. & Jenness, R. 1962 Dephosphorization of casein by heat treatment. I. In caseinate solutions. Journal of Dairy Science 45 1219CrossRefGoogle Scholar
Ben Shaul, D. M. 1962 The composition of the milk of wild animals. International Zoo Yearbook 4 333342Google Scholar
Berger, J. 1986 Wild Horses of the Intermontane Basin. Chicago: University of Chicago PressGoogle Scholar
Bouwman, H. & Van Der Schee, W. 1978 Composition and production of milk from Dutch warmblooded saddle horse mares. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 40 3953CrossRefGoogle Scholar
Corbet, G. B. & Hill, J. E. 1980 A World List of Mammalian Species London: British Museum (Natural History)Google Scholar
Dittrich, H. 1938 [A study of the composition of mare's milk]. Milchwirtschaftliche Forschungen 19 406412Google Scholar
Doreau, M., Boulot, S., Martin-Rosset, W. & Dubroeucq, H. 1986 Milking lactating mares using oxytocin: milk volume and composition. Reproduction, Nutrition, Développement 26, 111Google Scholar
Gonzales-Diaz, C. & Cravioto, R. O. 1947 [A contribution to the study of the composition of donkey's milk]. Anales de la Escuela Nacional de Ciencias Biologicas (Mexico) 4 371374Google Scholar
Groves, C. P. & Willoughby, D. P. 1981 Studies on the taxonomy and phylogeny of the genus Equus.I. Subgeneric classification of the recent species. Mammalia 45 321354CrossRefGoogle Scholar
Honacki, J. H., Kinman, K. E. & Koeppl, J. W. 1982 Mammal Species of the World. A Taxonomic and Geographic Reference. Lawrence, Kansas: Association of Systematics CollectionsGoogle Scholar
Horwitz, W. (Ed.) 1980 Official Methods of Analysis of the Association of Official Analytical Chemists 13th edn. Washington, DC: AOACGoogle Scholar
Intrieri, F. & Minieri, L. 1970 Composition of milk of Hafling mares. Dairy Science Abstracts 32 665 [Abstract; original in Italian]Google Scholar
Jackson, L. C. & Rothera, A. C. H. 1914 I. Milk – its milk sugar, conductivity and depression of freezing point. Biochemical Journal 8 127CrossRefGoogle ScholarPubMed
Jenness, R. 1953 Titration of calcium and magnesium in milk and milk fractions with ethylenediamine tetraacetate. Analytical Chemistry 25 966968CrossRefGoogle Scholar
Jenness, R. & Sloan, R. E. 1970 The composition of milks of various species: a review. Dairy Science Abstracts 32 599612Google Scholar
King, J. M. 1965 A field guide to the reproduction of the Grant's zebra and Grevy's zebra. East African Wildlife Journal 3 99117CrossRefGoogle Scholar
Linton, R. G. 1931 The composition of mare's milk. Journal of Agricultural Science 21 669688CrossRefGoogle Scholar
Linton, R. G. 1937 The composition of mare's milk. II. The variation in composition during lactation. Journal of Dairy Research 8 143165CrossRefGoogle Scholar
Linzell, J. L. & King, J. M. 1966 Composition of zebra milk. International Zoo Yearbook 6 262CrossRefGoogle Scholar
Ma, T. S. & Zuazaga, G. 1942 Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method. Industrial and Engineering Chemistry, Analytical Edition 14 280282Google Scholar
Marier, J. R. & Boulet, M. 1959 Direct analysis of lactose in milk and serum. Journal of Dairy Science 42 13901391CrossRefGoogle Scholar
Masek, J. 1939 Milk from the wild horse Przewalski. Chemical Abstracts 33 1379 [Abstract; original in Russian]Google Scholar
Neseni, R., Flade, E., Heidler, G. & Steger, H. 1958 [The yield and composition of mare's milk throughout lactation.] Archiv für Tierzucht 1 91129Google Scholar
Oftedal, O. T. 1984 Milk composition, milk yield and energy output at peak lactation: a comparative review. Symposia of the Zoological Society of London 51 3385Google Scholar
Oftedal, O. T. 1985 Pregnancy and lactation. In Bioenergetics of Wild Herbivores (Eds Hudson, R. J. & White, R. G.) pp. 215238. Boca Raton, FL: CRC PressGoogle Scholar
Oftedal, O. T., Hintz, H. F. & Schryver, H. F. 1983 Lactation in the horse: milk composition and intake by foals. Journal of Nutrition 113 20962106CrossRefGoogle ScholarPubMed
Pagan, J. D. & Hintz, J. F. 1986 Composition of milk from pony mares fed various levels of digestible energy. Cornell Veterinarian 76 139148Google ScholarPubMed
Pepkowitz, L. P. & Shive, J. W. 1942 Kjeldahl nitrogen determination. A rapid wet-digestion micromethod. Industrial and Engineering Chemistry, Analytical Edition 14 914916Google Scholar
Perrin, D. R. 1958 The calorific value of milk of different species. Journal of Dairy Research 25 215220CrossRefGoogle Scholar
Perry, N. A. & Doan, F. J. 1950 A picric acid method for the simultaneous determination of lactose and sucrose in dairy products. Journal of Dairy Science 33 176185CrossRefGoogle Scholar
Schryver, H. F., Oftedal, O. T., Williams, J., Soderholm, L. V. & Hintz, H. F. 1986 a Lactation in the horse: the mineral composition of mare milk. Journal of Nutrition 116 21422147CrossRefGoogle ScholarPubMed
Schryver, H. F., Oftedal, O. T., Williams, J., Cymbaluk, N. F., Antczak, D. & Hintz, H. F. 1986 b A comparison of the mineral composition of milk of domestic and captive wild equids (Equus przewalskii, E. zebra, E. burchelli, E. caballus, E. asinus). Comparative Biochemistry and Physiology 85A 233235CrossRefGoogle Scholar
Sumner, J. B. 1944 A method for the colorimetric determination of phosphorus. Science 100 413414CrossRefGoogle ScholarPubMed
Wagner, B. 1908 [An investigation of the composition of asses' milk]. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel 16 174175CrossRefGoogle Scholar