Published online by Cambridge University Press: 16 February 2022
The main objective of this experiment was to evaluate the effects of two milking intervals (8 and 16 h) on milk constituents (fat, protein, lactose, dry matter, and log10 SCC) of nineteen Istrian × Awassi × East-Friesian crossbred ewes in different milk fractions (0–25, 25–50, 50–75 and 75–100%) during the course of milking and in machine stripping (MS) milk. Furthermore, we sought to determine the effect of the two milking intervals on milking characteristics (average milk flow rate, peak milk flow rate, machine-on time, total milk yield, and milk production rate) and whether each milk constituent within each milking interval is best described by a linear, quadratic, or cubic function. Average milk flow rate and milk yield per milking decreased in the 8 h milking interval compared to the 16 h milking interval (P < 0.05). Peak milk flow rate, machine-on time, and milk production rate were not different between the two milking intervals. Overall, milk fat content, dry matter content, and log10 SCC increased in the 8 h milking interval compared to the 16 h milking interval (P < 0.05). Milk protein content did not change through the main milk fractions at either milking interval. Milk lactose content did not change through the milk fractions at the 8 h milking interval, whereas it decreased in the 75–100% and stripping milk fractions at the 16 h milking interval (P < 0.05). The 0–25% and stripping milk fractions contained the highest log10 SCC compared to all other milk fractions (P < 0.05). Changes of milk fat and dry matter content throughout milking were best described by quadratic functions, whereas milk protein content, milk lactose content, and log10 SCC were best described by different functions depending on the milking interval. These results demonstrate that milking interval influenced all milk constituents in various milk fractions during the course of ewe milking. Moreover, milking characteristics such as average milk flow and total milk yield, and the appropriate mathematical function to characterize milk constituents throughout a milking, were affected by milking interval.