Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:04:47.075Z Has data issue: false hasContentIssue false

The effect of fatty acids on the metabolism of lactic acid streptococci: I. Inhibition of bacterial growth and proteolysis

Published online by Cambridge University Press:  01 June 2009

R. F. Anders
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Victoria, Australia
G. R. Jago
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Victoria, Australia

Summary

The early loss of viability of Streptococcus cremoris strain C 13 in Cheddar cheese was investigated. The growth of this strain was markedly inhibited by cheese extracts containing unesterified fatty acids of which oleic acid was the major inhibitory constituent active against the coccus. This acid was found to accumulate in cheese early in the ripening process and may be responsible for the early loss of viability of strain C 13 in cheese.

Early loss of viability of a starter organism in cheese could result in a low peptidase activity by limiting the number of bacterial cells present. The subsequent accumulation of unhydrolysed bitter peptides would produce a bitter flavour.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amundstad, O. (1950). Medd. Mejeriförs. Malmo, 28.Google Scholar
Borgstrom, B. (1952). Acta physiol. scand. 25, 101.CrossRefGoogle Scholar
Colowick, S. P. & Kaplan, N. O. (1955). Methods of Enzymology, 1, 55. New York: Academic Press Inc.Google Scholar
Costilow, R. N. & Speck, M. L. (1951). J. Dairy Sci. 34, 1104.Google Scholar
Czulak, J. (1959). Aust. J. Dairy Tech. 14, 177.Google Scholar
Dawson, D. J. & Feagan, J. T. (1957). J. Dairy Res. 24, 210.CrossRefGoogle Scholar
Emmons, D. B., McCugan, W. A. & Elliott, J. A. (1960). J. Dairy Sci. 43, 862.Google Scholar
Emmons, D. B., McCugan, W. A., Elliott, J. A. & Morse, P. M. (1962). J. Dairy Sci. 45, 332.CrossRefGoogle Scholar
Herrington, B. L. (1954). J. Dairy Sci. 37, 775.Google Scholar
Hilditch, T. P. (1941). The Chemical Composition of Natural Fats. London: Chapman & Hall.Google Scholar
Hull, M. E. (1947). J. Dairy Sci. 30, 881.Google Scholar
Kondo, M. (1962). J. Biochem. Tokyo, 52, 279.Google Scholar
Mabbitt, L. A. (1961). J. Dairy Res. 28, 303.CrossRefGoogle Scholar
Miles, A. A. & Misra, S. S. (1938). J. Hyg., Camb., 38, 733.Google Scholar
Nieman, C. (1954). Bact. Rev. 18, 147.CrossRefGoogle Scholar
Perry, K. D. (1961). J. Dairy Res. 28, 221.Google Scholar
Peterson, M. H., Johnson, M. J. & Price, W. V. (1949). J. Dairy Sci. 32, 862.Google Scholar
Pregl, F. (1945). Quantitative Organic Micro-analysis. London: J. & A. Churchill.Google Scholar
Stadhouders, J. (1960). Ned. melk- en Zuiveltijdsehr. 14, 106.Google Scholar
Trout, D. L., Estes, E. H. & Friedberg, S. J. (1960). J. Lipid Res. 1, 1991.CrossRefGoogle Scholar