Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T17:13:35.262Z Has data issue: false hasContentIssue false

Proteolysis and aggregation of casein micelles treated with immobilized or soluble chymosin

Published online by Cambridge University Press:  01 June 2009

Douglas G. Dalgleish
Affiliation:
Hannah Research Institute, AyrScotland, KA6 5HL

Summary

The relationship between extent of κ-casein proteolysis and aggregatability of milk casein micelles has been studied using chymosin either bound to porous glass supports or free in solution. Both enzyme preparations demonstrated that, overall, 86–90 % of the κ-casein had to be destroyed before any aggregation could occur. Based on these results, a mathematical model of chymosin action on casein is described involving (i) the attack on κ-casein by chymosin, via a Michaelis–Menten mechanism (ii) the probability that sufficient κ-casein on any micelle is destroyed to allow aggregation, and (iii) the aggregation of para-casein micelles by a von Smoluchowski mechanism.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashoor, S. H., Sair, R. A., Olson, N. F. & Richardson, T. (1971). Biochimica et Biophysica Acta 229, 423.CrossRefGoogle Scholar
Berridge, N. J. (1942). Nature, London 149, 194CrossRefGoogle Scholar
Brown, R. J. & Swaisgood, H. W. (1975). Journal of Dairy Science 58, 796.Google Scholar
Castle, A. V. & Wheelock, J. V. (1972). Journal of Dairy Research 39, 15.CrossRefGoogle Scholar
Cho, I. C. & Swaisgood, H. W. (1974). Biochimica d Biophysiea Acta 334, 243.Google Scholar
Dixon, M. & Webb, E. C. (1964). Enzymes, 2nd Edn. p. 114. London: Longmans.Google Scholar
Ekstrand, B. & Larsson-Raźnikiewicz, M. (1978). Biochimica et Biophysiea Acta 536, 1.CrossRefGoogle Scholar
Green, M. L. & Crutchfield, G. (1969). Biochemical Journal 115, 183.CrossRefGoogle Scholar
Green, M. L., Hobbs, D. G., Morant, S. V. & Hill, V. A. (1978). Journal of Dairy Research 45, 413.CrossRefGoogle Scholar
Green, M. L. & Marshall, R. J. (1977). Journal of Dairy Research 44, 521.Google Scholar
Holt, C., Dalgleish, D. G. & Parker, T. G. (1973). Biochimica d Biophysiea Acta 328, 428.CrossRefGoogle Scholar
Hyslop, D. B., Richardson, T. & Ryan, D. S. (1979). Biochimica et Biophysiea Acta 566, 390.CrossRefGoogle Scholar
Lin, S. H. C., Dewan, R. K., Bloomfield, V. A. & Morr, C. V. (1971). Biochemistry 10, 4788.CrossRefGoogle Scholar
Payens, T. A. J. (1977). Biophysical Chemistry 6, 263.Google Scholar
Payens, T. A. J., Wiersma, A. K. & Brinkhuis, J. (1977). Biophysical Chemistry 6, 253.CrossRefGoogle Scholar
Robinson, P. J., Dunnill, P. & Lilly, M. D. (1971). Biochimica et Biophysica Ada 242, 659.CrossRefGoogle Scholar
Von Smoluchowski, M. (1971). Zeitschrift für Physikalische Chemie 92, 129.Google Scholar
West, D. W. & Towers, G. E. (1976). Analytical Biochemistry 74, 53.Google Scholar