Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T06:37:50.416Z Has data issue: false hasContentIssue false

Identification of a C20 multibranched fatty acid from butterfat as 3,7,11,15-tetramethylhexadecanoic acid

Published online by Cambridge University Press:  01 June 2009

R. P. Hansen
Affiliation:
Fats Research Division, D.S.I.R., Wellington, New Zealand
F. B. Shorland
Affiliation:
Fats Research Division, D.S.I.R., Wellington, New Zealand
James D. Morrison
Affiliation:
Division of Chemical Physics, C.S.I.R.O., Melbourne, Australia

Summary

A C20 multibranched fatty acid earlier isolated from butterfat in trace amounts has been conclusively identified by means of mass and infra-red spectrometry and gas-liquid chromatography as 3,7,11,15-tetramethylhexadecanoic acid.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamsson, S., Ställberg-Stenhagen, S. & Stenhagen, E. (1963). The higher saturated branched chain fatty acids. Progress in the Chemistry of Fats and Other Lipids. Vol. 7, Pt. 1. London: Pergamon Press.Google Scholar
Akashi, S. & Saito, K. (1960). J. Biochem., Tokyo, 47, 222.Google Scholar
Bendoraitis, J. G., Brown, B. L. & Hepner, L. S. (1962). Analyt. Chem. 34, 49.CrossRefGoogle Scholar
Bjurstam, N., Hallgren, B., Ryhage, R. & Ställberg-Stenhagen, S. Referred to by Stonhagen, E. (1961). Z. analyt. Chem. 181, 462.Google Scholar
Blumer, M., Mullin, M. M. & Thomas, D. W. (1963). Science, 140, 974.CrossRefGoogle Scholar
Duncan, W. R. H. & Garton, G. A. (1963). Biochem. J. 89, 414.CrossRefGoogle Scholar
Fisher, L. R., Kon, S. K. & Thompson, S. Y. (1952). J. Mar. Biol. Ass. U.K. 31, 229.CrossRefGoogle Scholar
Hallgren, B. & Larsson, S. (1963). Acta chem. scand. 17, 543.Google Scholar
Hansen, R. P. (1964). Nature, Lond., 201, 192.Google Scholar
Hansen, R. P. & Morrison, J. D. (1964). Biochem. J. 93, 225.CrossRefGoogle Scholar
Hansen, R. P. & Shorland, F. B. (1951). Biochem. J. 50, 358.CrossRefGoogle Scholar
Hansen, R. P. & Shorland, F. B. (1953). Biochem. J. 55, 662.CrossRefGoogle Scholar
Hansen, R. P., Shorland, F. B. & Cooke, N. J. (1958). J. Sci. Fd. Agric. 9, 391.CrossRefGoogle Scholar
Kahlke, W. (1963). Klin. Wschr. 41, 783.CrossRefGoogle Scholar
Karrer, P., Geiger, A., Rentschler, H., Zbinden, E. & Kugler, A. (1943). Helv. chim. acta, 26, 1741.Google Scholar
Keeney, M., Katz, I. & Allison, M. J. (1962). J. Amer. Oil Chem. Soc. 39, 198.CrossRefGoogle Scholar
Klenk, E. & Kahlke, W. (1963). Hoppe-Seyl. Z. 333, 133.CrossRefGoogle Scholar
Kochloefl, K., Schneider, P., Řeřicha, R., Horák, M. & Bažant, V. (1963). Chem. & Ind. p. 692.Google Scholar
Lederer, E. & Pliva, J. (1951). Bull. Soc. chim. Fr. p. 72.Google Scholar
Lennarz, W. J. (1961). Biochem. biophys. Res. Commun. 6, 112.CrossRefGoogle Scholar
Lough, A. K. (1963). Biochem. J. 86, 14p.Google Scholar
Lough, A. K. (1964). Biochem. J. 91, 584.Google Scholar
Lovelock, J. E., James, A. T. & Piper, E. A. (1959). Ann. N.Y. Acad. Sci. 72, 720.CrossRefGoogle Scholar
Macfarlane, M. G. (1961 a). Biochem. J. 79, 4p.Google Scholar
Macfarlane, M. G. (1961 b). Biochem. J. 80, 45p.Google Scholar
Macfarlane, M. G. (1962). Biochem. J. 82, 40p.Google Scholar
McMurray, H. L. & Thornton, V. (1952). Analyt. Chem. 24, 318.Google Scholar
Mold, J. D., Stevens, R. K., Means, R. E. & Ruth, J. M. (1963). Nature, Lond., 199, 283.Google Scholar
Pliva, J. & Sörensen, N. A. (1950). Acta chem. scand. 4, 846.Google Scholar
Ryhage, R. & Stenhagen, E. (1960 a). Ark. Kemi. 15, 291.Google Scholar
Ryhage, R. & Stenhagen, E. (1960 b). J. Lipid Res. 1, 361.CrossRefGoogle Scholar
Saito, K. (1960 a). J. Biochem., Tokyo, 47, 699.Google Scholar
Saito, K. (1960 b). J. Biochem., Tokyo, 47, 710.Google Scholar
Shorland, F. B. & Hansen, R. P. (1957). Dairy Sci. Abstr. 19, 168.Google Scholar
Simpson, D. M. & Sutherland, G. B. B. M. (1949). Proc. roy. Soc. A, 199, 169.Google Scholar
Sonneveld, W., Haverkamp Begemann, P., Beers, G. J. van, Keuning, R. & Schogt, J. C. M. (1962). J. Lipid Res. 3, 351.CrossRefGoogle Scholar
Sörensen, J. S. & Sörensen, N. A. (1949). Acta chem. scand. 3, 939.CrossRefGoogle Scholar
Sörensen, N. A. & Mehlum, J. (1948). Acta chem. scand. 2, 140.CrossRefGoogle Scholar
Stenhagen, E. (1961). Z. analyt. Chem. 181, 462.CrossRefGoogle Scholar
Thompson, H. W. (1948). J. chem. Soc. p. 328Google Scholar
Thompson, H. W. & Torkington, P. (1945). Proc. roy. Soc. A, 184, 3.Google Scholar
Toyama, Y. (1923). Chem. Umsch. Fette, 30, 181.Google Scholar
Tsuchiya, T. & Kaneko, R. (1951). J. Soc. chem. Ind. Japan, 54, 592.Google Scholar
Tsujimoto, M. (1917). J. industr. Engng Chem. 9, 1098.CrossRefGoogle Scholar
Woodford, F. P. & Gent, C. M. van (1960). J. Lipid Res. 1, 188.CrossRefGoogle Scholar