Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T02:37:08.292Z Has data issue: false hasContentIssue false

A fractionation of the αs-casein complex of bovine milk

Published online by Cambridge University Press:  01 June 2009

W. D. Annan
Affiliation:
The Hannah Dairy Research Institute, Ayr, Scotland
W. Manson
Affiliation:
The Hannah Dairy Research Institute, Ayr, Scotland

Summary

The nature of the αs-casein complex of bovine milk has been investigated by cation-exchange chromatography on columns of sulphoethyl Sephadex C-50 of purified preparations of αs-casein and of whole acid-precipitated casein. Three main fractions were separated from each. Two behaved as single homogeneous proteins as judged by starch-gel electrophoresis; they were the main constituent of the complex, αs1-casein, and a closely related phosphoprotein, designated αs0-casein, which was present in small amounts only. The third fraction also constituted only a small part of the total complex. It was heterogeneous on starch gel electrophoresis and contained 2 major and 2 minor components. This fraction, while similar to other members of the αs-casein complex and to β-caseins hitherto described in that it contained phosphorus, nevertheless differed significantly from these since 3 at least of its components contained sulphur either in the form of disulphide bonds or of sulphydryl groupings.

Information is presented on the composition of the 3 fractions including C-terminal end group analysis.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. J. L. (1940). Biochem. J. 34, 858.CrossRefGoogle Scholar
Anfinsen, C. B. & Haber, E. (1961). J. biol. Chem. 236, 1361.CrossRefGoogle Scholar
Aronsson, T. & Grönwall, A. (1957). Scand. J. clin. Lab. Invest. 9, 338.Google Scholar
Aschaffenburg, R. & Drewry, J. (1957). Biochem. J. 65, 273.CrossRefGoogle Scholar
El-Negoumy, A. M. (1967). Biochim. biophys. Acta 140, 503.CrossRefGoogle Scholar
Haber, E. & Anfinsen, C. B. (1961). J. biol. Chem. 236, 422.CrossRefGoogle Scholar
Lowry, D. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
MacKinlay, A. G. & Wake, R. G. (1965). Biochim. biophys. Acta 104, 167.CrossRefGoogle Scholar
McMeekin, T. L., Hipp, N. J. & Groves, M. L. (1959). Archs Biochem. Biophys. 83, 35.CrossRefGoogle Scholar
Manson, W. (1961). Archs Biochem. Biophys. 95, 336.CrossRefGoogle Scholar
Manson, W. (1962). Biochim. biophys. Acta 63, 515.CrossRefGoogle Scholar
Manson, W. (1965). Biochem. J. 94, 452.CrossRefGoogle Scholar
Marier, J. R. & Rose, D. (1964). Analyt. Biochem. 7, 304.CrossRefGoogle Scholar
Neelin, J. M. (1964). J. Dairy Sci. 47, 506.CrossRefGoogle Scholar
Schmidt, D. G., Payens, T. A. J., van Markwijk, B. W. & Brinkhuis, J. A. (1967). Biochem. biophys. Res. Commun. 27, 448.CrossRefGoogle Scholar
Smithies, O. (1959). Biochem. J. 71, 585.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Thompson, M. P. (1966). J. Dairy Sci. 49, 792.CrossRefGoogle Scholar
Thompson, M. P. & Kiddy, C. A. (1964). J. Dairy Sci. 47, 626.CrossRefGoogle Scholar
Thompson, M. P., Kiddy, C. A., Pepper, L. & Zittle, C. A. (1962). Nature, Lond. 195, 1001.CrossRefGoogle Scholar
Thompson, M. P., Tarassuk, N. P., Jenness, R., Lillevik, H. A., Ashworth, U. S. & Rose, D. (1965). J. Dairy Sci. 48, 159.CrossRefGoogle Scholar
Waugh, D. F., Ludwig, M. L., Gillespie, J. M., Melton, B., Foley, M. & Kleiner, E. S. (1962). J. Am. Chem. Soc. 84, 4929.CrossRefGoogle Scholar
Waugh, D. F. & von Hippel, P. H. (1956). J. Am. Chem. Soc. 78, 4576.CrossRefGoogle Scholar
Weil, L. & Seibles, T. S. (1961). Archs Biochem. Biophys. 93, 193.CrossRefGoogle Scholar