Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T19:38:29.021Z Has data issue: false hasContentIssue false

343 Development of osteoclast derived exosomes for vascular calcification therapy

Published online by Cambridge University Press:  03 April 2024

Isabella Jennings
Affiliation:
University of Washington, USA
Hao Zhou
Affiliation:
University of Washington, USA
Suryo Kuncorojakti
Affiliation:
Universitas Airlangga, Indonesia
Medania Purwaningrum
Affiliation:
Universitas Gadjah Mada, Indonesia
Marta Scatena
Affiliation:
University of Washington, USA
Cecilia M. Giachelli
Affiliation:
University of Washington, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: The global incidence of calcific aortic valve disease (CAVD) increased 3.5-fold since 1990. No preventative or therapeutic pharmaceutical therapies exist for CAVD. We will establish the therapeutic potential of osteoclast-derived exosomes though characterization of contents and mechanisms of action to protect against mineralization. METHODS/STUDY POPULATION: Exosomes were purified from conditioned media collected from murine myeloid precursor cells, RAW264.7 (control), and osteoclasts induced to differentiate from RAW264.7 cells (OD). Protein content of exosomes was determined using proteomic analyses. Nucleic acid contents will be identified by sequencing mRNA, miRNA, and DNA. The calcification prevention and reabsorption abilities of control and OD exosomes will be tested using human valvular interstitial cells (VIC) and smooth muscle cell calcification assays and acellular osteologic disc assays, respectively. Comparison between cellular and acellular systems will help identify mechanisms of action, and demonstrate potential therapeutic viability of OD exosomes in preventative vs resorptive treatments. RESULTS/ANTICIPATED RESULTS: OD exosomes, but not control exosomes, prevented calcification in VIC in vitro. OD exosomes contained osteoclast-specific proteins including TRAP, MMP6, cathepsin K, and bone reabsorption factors including V type proton pumps, ATPases, and integrins. These genes are also involved in resorptive activities, and were highly upregulated in OD compared to control exosomes. We anticipate miRNA signatures associated with mineral resorption will also be present. Increased knowledge of exosome cargo will illuminate their mechanism of action and allow future work to engineer increased efficacy. We also anticipate a therapeutic response when OD exosomes are applied after calcification has begun, showing exosomes promote calcium reabsorption. DISCUSSION/SIGNIFICANCE: Establishing therapeutic potential and examining mechanisms of action will pave the way for OD exosomes as a CAVD treatment. Analysis of exosome contents will determine active molecules to be enhanced in future studies. This work will lay a foundation for moving into aortic valve organoid models, which are accepted by the FDA for preclinical trials.

Type
Other
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2024. The Association for Clinical and Translational Science