Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T06:17:48.712Z Has data issue: false hasContentIssue false

Associations Between Maternal Stress, Early Language Behaviors, and Infant Electroencephalography During the First Year of Life

Published online by Cambridge University Press:  09 September 2020

Lara J. PIERCE
Affiliation:
Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA
Emily REILLY
Affiliation:
Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
Charles A. NELSON III*
Affiliation:
Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Harvard Graduate School of Education, Cambridge, Massachusetts, USA
*
*Corresponding author: Boston Children's Hospital Laboratories of Cognitive Neuroscience, 1 Autumn St. 6th Floor Boston, MA, 02215 USA. 617-355-0401, Email: [email protected]

Abstract

Associations have been observed between socioeconomic status (SES) and language outcomes from early childhood, but individual variability is high. Exposure to high levels of stress, often associated with low-SES status, might influence how parents and infants interact within the early language environment. Differences in these early language behaviors, and in early neurodevelopment, might underlie SES-based differences in language that emerge later on. Analysis of natural language samples from a predominantly low-/mid-income sample of mother-infant dyads, obtained using the Language Environment Analysis (LENA) system, found that maternal reports of exposure to stressful life events, and perceived stress, were negatively correlated with child vocalizations and conversational turns when infants were 6 and 12 months of age. Greater numbers of vocalizations and conversational turns were also associated with lower relative theta power and higher relative gamma power in 6- and 12-month baseline EEG – a pattern that might support subsequent language development.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. J., & Perone, S. (2018). Developmental change in the resting state electroencephalogram: insights into cognition and the brain. Brain and cognition, 126, 4052.CrossRefGoogle ScholarPubMed
Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical neurophysiology, 114(2), 171183.Google Scholar
Benasich, A. A., Gou, Z., Choudhury, N., & Harris, K. D. (2008). Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behavioural brain research, 195(2), 215222.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289300.Google Scholar
Brito, N. H. (2017). Influence of the home linguistic environment on early language development. Policy Insights from the Behavioral and Brain Sciences, 4(2), 155162.CrossRefGoogle Scholar
Brito, N. H., Fifer, W. P., Myers, M. M., Elliott, A. J., & Noble, K. G. (2016). Associations among family socioeconomic status, EEG power at birth, and cognitive skills during infancy. Developmental cognitive neuroscience, 19, 144151.CrossRefGoogle Scholar
Brugha, T., Bebbington, P., Tennant, C., & Hurry, J. (1985). The List of Threatening Experiences: a subset of 12 life event categories with considerable long-term contextual threat. Psychological medicine, 15(1), 189194.CrossRefGoogle ScholarPubMed
Bruner, J. (1985). Vygotsky: A historical and conceptual perspective. Culture, communication, and cognition: Vygotskian perspectives, 21, 34.Google Scholar
Cantiani, C., Ortiz-Mantilla, S., Riva, V., Piazza, C., Bettoni, R., Musacchia, G., & Benasich, A. A. (2019). Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. NeuroImage: Clinical, 22, 101778.CrossRefGoogle ScholarPubMed
Cheskin, A. (1982). The use of language by hearing mothers of deaf children. Journal of Communication Disorders, 15, 145153.CrossRefGoogle ScholarPubMed
Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Age and sex effects in the EEG: development of the normal child. Clinical Neurophysiology 2001, 112(5), 806–14.CrossRefGoogle ScholarPubMed
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of health and social behavior, 385-396.CrossRefGoogle ScholarPubMed
Cohen, S., & Janicki-Deverts, D. (2012). Who's stressed? Distributions of psychological stress in the United States in probability samples from 1983, 2006, and 2009. Journal of applied social psychology, 42(6), 13201334.CrossRefGoogle Scholar
Conti-Ramsden, G. (1990). Maternal recasts and other contingent replies to language-impaired children. The Journal of Speech and Hearing Disorders, 55, 262274.CrossRefGoogle ScholarPubMed
Csibra, G., Davis, G., Spratling, M. W., & Johnson, M. H. (2000). Gamma Oscillations and Object Processing in the Infant Brain. Science, 290, 15821585.CrossRefGoogle ScholarPubMed
Cuevas, K., & Bell, M. A. (2011). EEG and ECG from 5 to 10 months of age: Developmental changes in baseline activation and cognitive processing during a working memory task. International Journal of Psychophysiology, 80(2), 119128.CrossRefGoogle ScholarPubMed
Debnath, R., Tang, A., Zeanah, C. H., Nelson, C. A., & Fox, N. A. (2020). The long-term effects of institutional rearing, foster care intervention and disruptions in care on brain electrical activity in adolescence. Developmental science, 23(1), e12872.CrossRefGoogle ScholarPubMed
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 921.CrossRefGoogle ScholarPubMed
Eisermann, M., Kaminska, A., Moutard, M. L., Soufflet, C., & Plouin, P. (2013). Normal EEG in childhood: from neonates to adolescents. Neurophysiologie Clinique/Clinical Neurophysiology, 43(1), 3565.CrossRefGoogle ScholarPubMed
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental science, 16(2), 234248.CrossRefGoogle ScholarPubMed
Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32, 209224CrossRefGoogle ScholarPubMed
Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., & Levin, A. R. (2018). The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Frontiers in neuroscience, 12, 97.CrossRefGoogle ScholarPubMed
Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R., Kimbrough Oller, D., Hansen, J.H., & Paul, T. D. (2017). Mapping the early language environment using all-day recordings and automated analysis. American Journal of Speech-Language Pathology, 26(2), 248265.CrossRefGoogle ScholarPubMed
Gilkerson, J., Richards, J. A., Warren, S. F., Oller, D. K., Russo, R., & Vohr, B. (2018). Language experience in the second year of life and language outcomes in late childhood. Pediatrics, 142(4), e20174276.CrossRefGoogle ScholarPubMed
Gilkerson, J., Zhang, Y., Xu, D., Richards, J. A., Xu, X., Jiang, F., Hamsberger, J., & Topping, K. (2015). Evaluating Language Environment Analysis system performance for Chinese: A pilot study in Shanghai. Journal of Speech, Language, and Hearing Research, 58(2), 445452.CrossRefGoogle ScholarPubMed
Gou, Z., Choudhury, N., & Benasich, A. A. (2011). Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behavioural brain research, 220(2), 263270.CrossRefGoogle Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child development, 58(3) 539559.CrossRefGoogle ScholarPubMed
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Paul H Brookes Publishing.Google Scholar
Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple significance testing. Statistics in medicine, 9(7), 811818.CrossRefGoogle ScholarPubMed
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child development, 74(5), 13681378.CrossRefGoogle ScholarPubMed
Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26, 5588.CrossRefGoogle Scholar
Hoff, E., & Ginsberg, E. (1991). Mother-child conversation in different social classes and communicative settings. Child development, 62(4), 782796.CrossRefGoogle Scholar
Hudspeth, W. J., & Pribram, K. H. (1992). Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology, 12(1), 1929.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Vasilyeva, M., Waterfall, H. R., Vevea, J. L., & Hedges, L. V. (2007). The varieties of speech to young children. Developmental psychology, 43(5), 1062.CrossRefGoogle ScholarPubMed
John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 12551258.CrossRefGoogle ScholarPubMed
Jung, T. P., Humphries, C., Lee, T. W., Makeig, S., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (1998). Extended ICA removes artifacts from electroencephalographic recordings. In Jordan, M.I., LeCun, Y., & Solla, S.A., (Eds.) Advances in neural information processing systems (pp. 894900). MIT Press.Google Scholar
Krieger, N., Chen, J. T., Waterman, P. D., Soobader, M. J., Subramanian, S. V., & Carson, R. (2003). Choosing area based socioeconomic measures to monitor social inequalities in low birth weight and childhood lead poisoning: The Public Health Disparities Geocoding Project (US). Journal of Epidemiology & Community Health, 57(3), 186199.CrossRefGoogle Scholar
Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831843.CrossRefGoogle ScholarPubMed
Levin, A. R., Méndez Leal, A. S., Gabard-Durnam, L. J., & O'Leary, H. M. (2018). BEAPP: The batch electroencephalography automated processing platform. Frontiers in neuroscience, 12, 513.CrossRefGoogle ScholarPubMed
Marchman, V. A., Martínez, L. Z., Hurtado, N., Grüter, T., & Fernald, A. (2017). Caregiver talk to young Spanish-English bilinguals: comparing direct observation and parent-report measures of dual-language exposure. Developmental Science, 20(1), e12425.CrossRefGoogle ScholarPubMed
Marfo, K. (1991). Early intervention in transition: Current perspectives on programs for handicapped children. Praeger Publishers.Google Scholar
Marshall, P. J., Fox, N. A., & BEIP Core Group. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16(8), 13271338.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Fox, N. A., Zeanah, C. H., Sheridan, M. A., Marshall, P., & Nelson, C. A. (2010). Delayed maturation in brain electrical activity partially explains the association between early environmental deprivation and symptoms of attention-deficit/hyperactivity disorder. Biological psychiatry, 68(4), 329336.CrossRefGoogle ScholarPubMed
Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020). Socioeconomic Disparities in Language Input Are Associated With Children's Language-Related Brain Structure and Reading Skills. Child development, 91(3), 846860.CrossRefGoogle ScholarPubMed
Mullen, T. (2012). CleanLine EEGLAB plugin. San Diego, CA: Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).Google Scholar
Nelson, K. E., Welsh, J. A., Trup, E. M. V., & Greenberg, M. T. (2011). Language delays of impoverished preschool children in relation to early academic and emotion recognition skills. First Language, 31(2), 164194.CrossRefGoogle Scholar
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental science, 10(4), 464480.CrossRefGoogle ScholarPubMed
Orena, A. J., Byers-Heinlein, K., & Polka, L. (2019). Reliability of the language environment analysis (LENA) recording system in analyzing French-English bilingual speech. Journal of Speech, Language, and Hearing Research, 62(7), 24912500.CrossRefGoogle ScholarPubMed
Orekhova, E. V., Stroganova, T. A., Posikera, I. N., & Elam, M. (2006). EEG theta rhythm in infants and preschool children. Clinical neurophysiology, 117(5), 10471062.CrossRefGoogle ScholarPubMed
Ortiz-Mantilla, S., Hämäläinen, J. A., Realpe-Bonilla, T., & Benasich, A. A. (2016). Oscillatory dynamics underlying perceptual narrowing of native phoneme mapping from 6 to 12 months of age. Journal of Neuroscience, 36(48), 1209512105.CrossRefGoogle ScholarPubMed
Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying pathways between socioeconomic status and language development. Annual Review of Linguistics, 3, 285308.CrossRefGoogle Scholar
Pakulak, E., & Neville, H. J. (2010). Proficiency differences in syntactic processing of monolingual native speakers indexed by event-related potentials. Journal of Cognitive Neuroscience, 22(12), 27282744.CrossRefGoogle ScholarPubMed
Paparella, T., & Kasari, C. (2004). Joint attention skills and language development in special needs populations: translating research to practice. Infants & Young Children, 17, 269280.CrossRefGoogle Scholar
Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: is there a role in poverty and education outcome research? Pediatric Neurology, 52(4), 383388.CrossRefGoogle Scholar
Pierce, L., & Genesee, F. (2014). Language input and language learning. In Gruïtér, T & Paradis, J. (Eds.), Input and Experience in Bilingual Development, 13, 59.Google Scholar
Pierce, L. J., Genesee, F., Delcenserie, A., & Morgan, G. (2017). Variations in phonological working memory: Linking early language experiences and language learning outcomes. Applied Psycholinguistics, 38(6), 12651300.CrossRefGoogle Scholar
Pierce, L. J., Thompson, B. L., Gharib, A., Schlueter, L., Reilly, E., Valdes, V., Roberts, S., Conroy, K., Levitt, P. & Nelson, C. A. (2019). Association of Perceived Maternal Stress During the Perinatal Period With Electroencephalography Patterns in 2-Month-Old Infants. JAMA pediatrics, 173(6), 561570.CrossRefGoogle ScholarPubMed
Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Rowe, M. L., & Gabrieli, J. D. (2018). Beyond the 30-million-word gap: Children's conversational exposure is associated with language-related brain function. Psychological science, 29(5), 700710.CrossRefGoogle ScholarPubMed
Rowe, M. L. (2008). Child-directed speech: Relation to socioeconomic status, knowledge of child development and child vocabulary skill. Journal of child language, 35(1), 185205.CrossRefGoogle ScholarPubMed
Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood. Developmental neuropsychology, 37(3), 253273.CrossRefGoogle Scholar
Takano, T., & Ogawa, T. (1998). Characterization of developmental changes in EEG-gamma band activity during childhood using the autoregressive model. Pediatrics International, 40(5), 446452.CrossRefGoogle ScholarPubMed
Tarullo, A. R., Obradović, J., Keehn, B., Rasheed, M. A., Siyal, S., Nelson, C. A., & Yousafzai, A. K. (2017). Gamma power in rural Pakistani children: Links to executive function and verbal ability. Developmental Cognitive Neuroscience, 26, 18.CrossRefGoogle ScholarPubMed
Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Development of cortical connections as measured by EEG coherence and phase delays. Human brain mapping, 29(12), 14001415.CrossRefGoogle ScholarPubMed
Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PloS one, 7(6), e39127.CrossRefGoogle ScholarPubMed
Tomalski, P., Moore, D. G., Ribeiro, H., Axelsson, E. L., Murphy, E., Karmiloff-Smith, A., Johnson, M.H., & Kushnerenko, E. (2013). Socioeconomic status and functional brain development–associations in early infancy. Developmental Science, 16(5), 676687.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences, 106(24), 98669871.CrossRefGoogle ScholarPubMed
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological science, 24(11), 21432152.CrossRefGoogle ScholarPubMed
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Psychology, 66(1), 173.CrossRefGoogle ScholarPubMed
Werker, J. F. (2018). Perceptual beginnings to language acquisition. Applied Psycholinguistics, 39(4), 703728.CrossRefGoogle Scholar
Wilkinson, C. L., Levin, A. R., Gabard-Durnam, L. J., Tager-Flusberg, H., & Nelson, C. A. (2019a). Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Research, 12(8), 12111224.CrossRefGoogle Scholar
Wilkinson, C. L., Gabard-Durnam, L. J., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019b). Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder. Neurobiology of Language, 1(1), 3353.CrossRefGoogle Scholar
Winkler, I., Brandl, S., Horn, F., Waldburger, E., Allefeld, C., & Tangermann, M. (2014). Robust artifactual independent component classification for BCI practitioners. Journal of neural engineering, 11(3), 035013.CrossRefGoogle ScholarPubMed
Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behavioral and Brain Functions, 7(1), 30.CrossRefGoogle ScholarPubMed
Xie, W., & Nelson, C. A. (in press). The State-of-the-Art Methodological Review of Pediatric EEG. Chapter to appear in Huang, H, Robert, T. (Eds.), Handbook of Paediatric brain imaging: Methods, Modalities and Applications. Elsevier Press: London, UKGoogle Scholar