No CrossRef data available.
Published online by Cambridge University Press: 04 May 2020
Let $X_1, X_2,\dots$ be a short-memory linear process of random variables. For $1\leq q<2$ , let ${\mathcal{F}}$ be a bounded set of real-valued functions on [0, 1] with finite q-variation. It is proved that $\{n^{-1/2}\sum_{i=1}^nX_i\,f(i/n)\colon f\in{\mathcal{F}}\}$ converges in outer distribution in the Banach space of bounded functions on ${\mathcal{F}}$ as $n\to\infty$ . Several applications to a regression model and a multiple change point model are given.