Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-20T06:56:58.237Z Has data issue: false hasContentIssue false

Optimal convergence rates of MCMC integration for functions with unbounded second moment

Published online by Cambridge University Press:  14 February 2025

Julian Hofstadler*
Affiliation:
University of Passau
*
*Postal address: Faculty of Computer Science and Mathematics, University of Passau, Innstraße 33, 94032 Passau, Germany. Email: [email protected]

Abstract

We study the Markov chain Monte Carlo estimator for numerical integration for functions that do not need to be square integrable with respect to the invariant distribution. For chains with a spectral gap we show that the absolute mean error for $L^p$ functions, with $p \in (1,2)$, decreases like $n^{({1}/{p}) -1}$, which is known to be the optimal rate. This improves currently known results where an additional parameter $\delta \gt 0$ appears and the convergence is of order $n^{(({1+\delta})/{p})-1}$.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieu, C., Lee, A., Power, S. and Wang, A. Q. (2024). Explicit convergence bounds for Metropolis Markov chains: Isoperimetry, spectral gaps and profiles. Ann. Appl. Prob. 34, 40224071.CrossRefGoogle Scholar
Asmussen, S. and Glynn, P. W. (2011). A new proof of convergence of MCMC via the ergodic theorem. Statist. Prob. Lett. 81, 14821485.CrossRefGoogle Scholar
Chatterjee, S. (2023). Spectral gap of nonreversible Markov chains. Preprint, arXiv:2310.10876.Google Scholar
Douc, R., Moulines, É., Priouret, P. and Soulier, P. (2018). Markov Chains. Springer, Berlin.CrossRefGoogle Scholar
Grafakos, L. (2014). Classical Fourier Analysis, 3rd edn. Springer, Berlin.CrossRefGoogle Scholar
Hairer, M., Stuart, A. M. and Vollmer, S. J. (2014). Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions. Ann. Appl. Prob. 24, 24552490.CrossRefGoogle Scholar
Heinrich, S. (1994). Random approximation in numerical analysis. In Proc. Conf. Functional Analysis, Essen, pp. 123171.Google Scholar
Joulin, A. and Ollivier, Y. (2010). Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Prob. 38, 24182442.CrossRefGoogle Scholar
Kunsch, R. J. and Rudolf, D. (2019). Optimal confidence for Monte Carlo integration of smooth functions. Adv. Comput. Math. 45, 30953122.CrossRefGoogle Scholar
Łatuszyński, K., Miasojedow, B. and Niemiro, W. (2013). Nonasymptotic bounds on the estimation error of MCMC algorithms. Bernoulli, 19, 20332066.CrossRefGoogle Scholar
Mathé, P. (1999). Numerical integration using Markov chains. Monte Carlo Meth. Appl. 5, 325343.CrossRefGoogle Scholar
Mathé, P. (2004). Numerical integration using V-uniformly ergodic Markov chains. J. Appl. Prob. 41, 11041112.CrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Natarovskii, V., Rudolf, D. and Sprungk, B. (2021). Quantitative spectral gap estimate and Wasserstein contraction of simple slice sampling. Ann. Appl. Prob. 31, 806825.CrossRefGoogle Scholar
Novak, E. (1988). Deterministic and Stochastic Error Bounds in Numerical Analysis (Lect. Notes Math. 1349). Springer, Berlin.CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Commun. Prob. 2, 1325.CrossRefGoogle Scholar
Rudolf, D. (2012). Explicit error bounds for Markov chain Monte Carlo. Dissertationes Math. 485, 193.CrossRefGoogle Scholar
Rudolf, D. and Schweizer, N. (2015). Error bounds of MCMC for functions with unbounded stationary variance. Statist. Prob. Lett. 99, 612.CrossRefGoogle Scholar