No CrossRef data available.
Published online by Cambridge University Press: 30 March 2016
In this paper we study the mixing time of certain adaptive Markov chain Monte Carlo (MCMC) algorithms. Under some regularity conditions, we show that the convergence rate of importance resampling MCMC algorithms, measured in terms of the total variation distance, is O(n-1). By means of an example, we establish that, in general, this algorithm does not converge at a faster rate. We also study the interacting tempering algorithm, a simplified version of the equi-energy sampler, and establish that its mixing time is of order O(n-1/2).