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Abstract

In this paper we study the mixing time of certain adaptive Markov chain Monte Carlo
(MCMC) algorithms. Under some regularity conditions, we show that the convergence
rate of importance resampling MCMC algorithms, measured in terms of the total variation
distance, is O(n−1). By means of an example, we establish that, in general, this algorithm
does not converge at a faster rate. We also study the interacting tempering algorithm,
a simplified version of the equi-energy sampler, and establish that its mixing time is of
order O(n−1/2).
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1. Introduction

Constructing Markov chain Monte Carlo (MCMC) transition kernels to sample efficiently
from a given distribution π , say, is a difficult task in practice as it requires a careful choice
and tuning of the kernel. The development of adaptive MCMC (AMCMC) methods is partly
motivated by the need of overcoming this difficulty. Instead of having a fixed Markov kernel P ,
at each round n an AMCMC algorithm selects a kernel Pθ̂n

from a family of Markov kernels
{Pθ }θ∈�, where the value (parameter) θ̂n is computed based on possibly all the samples
generated up to time n, so that the transition kernel is automatically self-adapted; see, for
example, the recent survey [6] and the references therein.

In this paper we investigate the convergence rates of two AMCMC algorithms: the impor-
tance resampling MCMC (IRMCMC) algorithm introduced byAtchadé [4], and the equi-energy
(EE) sampler by Kou et al. [12]. The IRMCMC algorithm is also referred to as the interacting
annealing algorithm [7]. For the EE sampler, we actually focus on a simplified version, which
is sometimes referred to as the interacting tempering (IT) algorithm [10].

Throughoutthe paper we denote by {Xn}n∈N the random process generated by either of these
algorithms. Limit theorems, notably convergence of marginal distributions and the law of large
numbers have been known; see, for example, [2]– [5], and [9]. Central limit theorems for such
AMCMC algorithms have been considered only recently by Fort et al. [10] and Bercu et al. [7].
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In short, introducing the auxiliary chain makes the stochastic process no longer Markov, which
raises considerable technical difficulties.

In this paper we study the convergence rate (or mixing time) of the IRMCMC and IT
algorithms. That is, we provide upper bounds on the distances between LXn (the distribution
of Xn) and the target distribution. Such mixing time results provide information on the burn-
in time of the algorithm. There are few results in the literature on the mixing rates of the
AMCMC.Andrieu andAtchadé [1] considered anAMCMC with a finite-dimensional parameter.
Related results have been obtained by Schmidler and Woodard [14] and Woodard et al. [16] on
convergence rates of AMCMC and related algorithms, although with a different point of view
from ours: they focused on the lower bound in terms of the problem size, not the simulation
rounds.

We show that the IRMCMC algorithm has convergence rate of order O(n−1). In particular,
we also provide a simple example, for which the convergence rate has lower bound 1/n. We
also show that for an m-tuple IRMCMC algorithm (to be defined in Section 2.4), the mixing
time is within O(n−1(log n)m−1). For the IT algorithm, under some regularity conditions,
we show that the rate of convergence is O(n−1/2) in terms of a slightly weaker norm than
the total variation distance. These results do not automatically lead to a precise method for
selecting burn-in periods because the constants in the derived bounds are hard to compute in
most practical cases. However, from a practical viewpoint, this analysis can be viewed as a
cautionary tale, suggesting that AMCMC samplers based on auxiliary chains typically require
longer burn-in periods than standard, well-behaved MCMC samplers.

The rest of the paper is organized as follows. In the remainder of the introduction we
provide a general description of the algorithms considered in the paper and introduce some
notation. Section 2 is devoted to the IRMCMC algorithm. The convergence rate is established
in Section 2.1, and for multiple IRMCMC algorithms in Section 2.4. Section 3 is devoted to
the IT algorithm.

1.1. Notation

We assume that the state space X is a Polish space equipped with a metric d, and B is the
associated Borel σ -algebra. In addition, (X, B) is a measure space with a reference σ -finite
measure, which we denote for short by dx. Let π and πY be probability measures on (X, B).
We assume that π and πY are both absolutely continuous with respect to dx and with a little
abuse of notation, we also use π and πY to denote the density, respectively. That is, we write
π(dx) = π(x)dx and similarly for πY . For a transition kernel Q, a measure ν and a function h,
we shall write νQ(·) �

∫
ν(dz)Q(z, ·), and Qh(·) �

∫
Q(·, dz)h(z).

In this paper, anAMCMC algorithm is a stochastic process {(Xn, Yn)}n≥0 in X×X, designed
such that the main chain Xn converges to the target distribution π in a certain sense to be
described precisely later. We also assume that the auxiliary chain {Yn}n≥0 converges to πY .
For the two algorithms analyzed in this paper, we assume that the evolution of the auxiliary
chain is independent of the main chain. The auxiliary chain is not necessarily Markov. Write
Fn = σ(X0, . . . , Xn, Y0, . . . , Yn).

We denote by π̂Y,n the empirical measure associated to the auxiliary chain {Yn}n∈N defined
by π̂Y,n(·) � (1/n)

∑n
i=1 δYi

(·). For functions f : X → R, we write

π̂Y,n(f ) � π̂Y,n(f ) − πY (f ).

We avoid writing f for the centered version of f , as it would be unclear with respect to which
measure f is centered, especially in the setup of multiple chains. We let C denote general
constants that do not depend on n, but may change from line to line.
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2. The IRMCMC

We consider the IRMCMC method described in Atchadé [4].

Algorithm 1. (The IRMCMC.) Fix ε ∈ (0, 1). Pick arbitrary X0 = x0 and Y0 = y0. Let P

be an arbitrary Markov kernel with invariant distribution π . At each round n, Xn and Yn are
conditionally independent given Fn−1, and (with w.p. meaning with probability)

Xn | Fn−1 ∼
{

P(Xn−1, ·) w.p. 1 − ε,

θ̂n−1(·) w.p. ε,

where θ̂n is the (randomly) weighted empirical distribution defined by

θ̂n(·) =
n∑

i=1

w̃(Yi)∑n
j=1 w̃(Yj )

δYi
(·) =

∫
· w̃(z)π̂Y,n(dz)∫
X w̃(z)π̂Y,n(dz)

,

with w̃(y) ∝ π(y)/πY (y) =: w(y), and θ̂0 = δy0 . Recall that πY is the limiting distribution of
the auxiliary chain {Yn}n≥0. We assume that |w|∞ � supx∈X |w(x)| < ∞.

For all probability measures θ on X, we introduce

Pθ(x, ·) = (1 − ε)P (x, ·) + εθ(·). (1)

In this way, for any bounded function f : X → R, E(f (Xn+1) | Fn) = Pθ̂n
f (Xn) almost

surely, where E is the expectation.

Remark 1. The assumption on the boundedness of w is not too restrictive. Indeed, very often
in practice, we have π̃ , the unnormalized density function of π as a bounded function, and set
the auxiliary chain with stationary distribution π̃Y ∝ πY obtained by π̃Y = π̃T with T ∈ (0, 1).
In this case, w̃ = π̃/π̃Y is bounded and thus so is w.

2.1. Convergence rate of the IRMCMC

The following equivalent representation of Algorithm 1 is useful. Let {Zn}n≥0 be a sequence
of independent and identically distributed random variables with P(Z1 = 1) = 1 − P(Z1 =
0) = ε, where P is the probability measure. Assume that {Zn}n≥0 and {Yn}n≥0 are independent
and for each n ≥ 1, Zn and Fn−1 are independent. Then, at round n, we can introduce Zn, and
write the conditional distribution of Xn given Zn, Fn−1 as

Xn | Fn−1, Zn ∼
{

P(Xn−1, ·) if Zn = 0,

θ̂n−1(·) if Zn = 1.

Define

τ0 = 0, τi+1 = min{k > τi : Zk = 1}, n∗ = max{k : τk ≤ n}.
Observe that at each time τk > 0, conditioning on Y0, Y1, . . . , Yτk−1, Xτk

is sampled from θ̂τk−1,
independent of X0, . . . , Xτk−1. Furthermore, Y0, . . . , Yn are independent from τ1, . . . , τn∗ .
Therefore, we first focus on

ηn � P(Xn+1 ∈ · | Zn+1 = 1) = Eθ̂n(·), n ∈ N.
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We first obtain a bound on the total variation distance ‖ηn − π‖TV. Recall that, given two prob-
ability distributions μ and ν, the total variation distance ‖μ − ν‖TV is defined by ‖μ − ν‖TV =
1
2 sup|f |∞≤1 |μ(f ) − ν(f )|. For convenience, write

Bn � |w|∞ sup
|f |∞≤1

Eπ̂Y,n(f ) + |w|2∞ sup
|f |∞≤1

E(π̂Y,n(f ))2, n ∈ N.

Recall that throughout, we assume that |w|∞ < ∞.

Lemma 1. For all n ∈ N, ‖ηn − π‖TV ≤ Bn.

The proof of Lemma 1 is postponed to Section 2.2. Lemma 1 yields a bound on the rate of
convergence of LXn towards π in the total variation norm, as shown in the following theorem.
We set B0 = B−1 = 1.

Theorem 1. Consider {Xn}n∈N generated from Algorithm 1. Then,

‖LXn − π‖TV ≤
n∑

�=0

(1 − ε)n−�B�−1. (2)

Furthermore, for any bounded measurable function f ,

E

(
1√
n

n∑
i=1

(f (Xi) − π(f ))

)2

≤ 80ε−2|f |2∞
n

+ 64ε−2|f |2∞ + |f |2∞
(

1√
n

n−1∑
k=0

√
Bk

)2

, n ∈ N. (3)

The proof of Theorem 1 is postponed to Section 2.2.

Remark 2. In Theorem 1, we do not assume any ergodicity assumption on the kernel P . In
the case that P is geometrically ergodic, one can improve (2) quantitatively by bounding the
term ‖ηkP

n−k − π‖TV more effectively. For example, if P is uniformly ergodic with rate ρ,
then (2) would become ‖LXn − π‖TV ≤ ∑n

�=0[ρ(1 − ε)]n−�B�−1. A similar improvement
can be formulated for (3). However, these improvements do not change the rate but only the
constant in the corollary below. Besides, such improvements will not be easily available if P

is subgeometrically ergodic.

Now, as a corollary, we obtain an upper bound on the convergence rate of the IRMCMC
algorithm, under the following assumption.

Assumption 1. There exists a finite constant C such that for all measurable functions f : X →
R, with |f |∞ ≤ 1,

Eπ̂Y,n(f ) ≤ C

n
, E(π̂Y,n(f ))2 ≤ C

n
.

Remark 3. Since E(π̂Y,n(f ))2 = n−1
E(n−1/2∑n

i=1(f (Yi) − πY (f )))2, the second equation
of Assumption 1 simply requires the finiteness of asymptotic variance under {Yn}n∈N which is
also a very desirable property in practice. This is a fairly mild assumption that holds for many
processes with short-range dependence; see, for example, Häggström and Rosenthal [11] for
further discussion when {Yn}n∈N is a Markov chain.

The first equation of Assumption 1 is also a fairly mild ergodicity assumption.
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Corollary 1. Consider the IRMCMC (Algorithm 1). If Assumption 1 holds then there exists a
finite constant C such that

‖LXn − π‖TV ≤ C

n
.

Furthermore, for any bounded measurable function f ,

E

(
1√
n

n∑
i=1

(f (Xi) − π(f ))

)2

≤ C|f |2∞, n ∈ N.

Proof. Under Assumption 1, (2) yields

‖LXn − π‖TV ≤ C

n

[�n/2
∑
�=1

(1 − ε)n−� n

�
+

n∑
�=�n/2
+1

(1 − ε)n−� n

�

]

≤ C

n

[
(1 − ε)n/2n + 2

1 − ε

]
.

This proves the first conclusion. The proof of the second is staightforward and is thus omitted.

2.2. Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. Rewrite ηn(f ) as

ηn(f ) = E

( n∑
j=1

w(Yj )∑n
l=1 w(Yl)

f (Yj )

)

= E

(
1

n

n∑
j=1

w(Yj )f (Yj ) +
(

1 − 1

n

n∑
j=1

w(Yj )

) n∑
j=1

w(Yj )f (Yj )∑n
l=1 w(Yl)

)
= E(π̂Y,n(wf ) − π̂Y,n(w)θ̂n(f )),

where in the third equality above, we use the fact that πY (w) = 1. Since π(f ) = πY (wf ),
‖ηn − π‖TV = sup|f |∞≤1

1
2 (ηn(f ) − π(f )) is bounded by

1

2
sup

|f |∞≤1
Eπ̂Y,n(wf ) + 1

2
sup

|f |∞≤1
E(π̂Y,n(w)θ̂n(f ))

≤ 1

2
sup

|f |∞≤1
Eπ̂Y,n(wf ) + 1

2
sup

|f |∞≤1
E(π̂Y,n(w)πY (wf ))

+ 1

2
sup

|f |∞≤1
E(π̂Y,n(w)(θ̂n(f ) − πY (wf ))).

Observe that

sup
|f |∞≤1

E(π̂Y,n(w)πY (wf )) = sup
|f |∞≤1

π(f )Eπ̂Y,n(w) ≤ |w|∞ sup
|f |∞≤1

π̂Y,n(f )

and |w|∞ ≥ 1. Therefore,

‖ηn − π‖TV ≤ |w|∞ sup
|f |∞≤1

Eπ̂Y,n(f ) + 1

2
sup

|f |∞≤1
E(π̂Y,n(w)(θ̂n(f ) − πY (wf ))). (4)
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By the Cauchy–Schwarz inequality,

sup
|f |∞≤1

E(π̂Y,n(w)(θ̂n(f ) − πY (wf )))

≤ [E(π̂Y,n(w))2]1/2 sup
|f |∞≤1

[E(θ̂n(f ) − πY (wf ))2]1/2. (5)

The first term is bounded by |w|∞ sup|f |∞≤1[E(π̂Y,n(f ))2]1/2. For the second term, observe
that

E(θ̂n(f ) − πY (wf ))2 ≤ 2E(θ̂n(f ) − π̂Y,n(wf ))2 + 2E(π̂Y,n(wf ) − πY (wf ))2, (6)

and

E(θ̂n(f ) − π̂Y,n(wf ))2 = E

( n∑
j=1

w(Yj )f (Yj )∑n
l=1 w(Yl)

− 1

n

n∑
j=1

w(Yj )f (Yj )

)2

= E((1 − π̂Y,n(w))2θ̂2
n (f ))

≤ E(πY (w) − π̂Y,n(w))2

≤ |w|2∞ sup
|g|∞≤1

E(π̂Y,n(g))2,

and the above calculation holds for all f : |f |∞ ≤ 1. So, (6) can be expressed as

sup
|f |∞≤1

E(θ̂n(f ) − πY (wf ))2 ≤ 4|w|2∞ sup
|f |∞≤1

E(π̂Y,n(f ))2. (7)

Combining (4), (5), and the above inequality yields the desired result.

Proof of Theorem 1. We recall that τn∗ is the last time k before n that the main chain is
sampled from θ̂k−1. Now, we can write

‖LXn − π‖TV = sup
|f |∞≤1

1

2

∣∣∣∣ n∑
k=0

E(f (Xn) 1{τn∗=k}) − π(f )

∣∣∣∣
= sup

|f |∞≤1

1

2

∣∣∣∣ n∑
k=0

P(τn∗ = k)[E(f (Xn) | τn∗ = k) − π(f )]
∣∣∣∣,

where 1 is the indicator function. Thus,

‖LXn − π‖TV ≤
n∑

k=0

P(τn∗ = k) sup
|f |∞≤1

1

2
|E(f (Xn) | τn∗ = k) − π(f )|. (8)

Observe that the conditional distribution of Xn, given that τn∗ = k ≥ 1, is ηk−1P
n−k (set

η0 = δY0 ). Then,

sup
|f |∞≤1

1

2
|E(f (Xn) | τn∗ = k) − π(f )| = sup

|f |∞≤1

1

2
|ηk−1P

n−k(f ) − π(f )|

= ‖ηk−1P
n−k − π‖TV.
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By the fact that πP = π , we have ‖ηk−1P
n−k − π‖TV ≤ ‖ηk−1 − π‖TV ≤ Bk−1 by Lemma 1.

Also, P(τn∗ = k) = ε(1 − ε)n−k for k = 1, . . . , n and P(τn∗ = 0) = (1 − ε)n. Thus, (8) can
be expressed as (2).

To establish (3), we show that the partial sum
∑n

k=1(f (Xk)−π(f )) admits a well-behaved
martingale approximation. For a probability measure θ on X, define

πθ(A) = ε

∞∑
j=0

(1 − ε)j (θP j )(A), A ∈ B.

Clearly, πθ is a probability measure on (X, B), and one can verify that πθPθ = πθ , and,
moreover, that for any bounded measurable function f , and n ≥ 1,

P n
θ f (x) − πθ(f ) = (1 − ε)nP nf (x) − ε

∞∑
j=n

(1 − ε)j (θP j )f. (9)

Indeed, the n = 1 case follows from the definition of Pθ in (1). For n ≥ 1, by induction,
P n+1

θ f (x) − πθ(f ) = P n
θ (Pθf )(x) − πθ(Pθf ) equals

(1 − ε)n+1P n+1f (x) + (1 − ε)nεθf − ε

∞∑
j=n

(1 − ε)j (θP j )[(1 − ε)Pf + εθf ]

= (1 − ε)n+1P n+1f (x) + ε

∞∑
j=n+1

(1 − ε)j (θP j )f.

It follows from (9) that ‖P n
θ (x, ·) − πθ‖TV ≤ 2(1 − ε)n, and, consequently, the function

gθ (x) =
∞∑

j=0

(P
j
θ f (x) − πθ(f )) (10)

is well defined with |gθ |∞ ≤ 2ε−1|f |∞, and satisfies Poisson’s equation,

gθ (x) − Pθgθ (x) = f (x) − πθ(f ), x ∈ X. (11)

In particular, we have f (Xk) − πθ̂k−1
(f ) = gθ̂k−1

(Xk) − Pθ̂k−1
gθ̂k−1

(Xk) almost surely. Using
this, we write

n∑
k=1

(f (Xk) − π(f )) =
n∑

k=1

(πθ̂k−1
(f ) − π(f )) +

n∑
k=1

(f (Xk) − πθ̂k−1
(f ))

with

(12)
n∑

k=1

(f (Xk) − πθ̂k−1
(f )) =

n∑
k=1

(gθ̂k−1
(Xk) − Pθ̂k−1

gθ̂k−1
(Xk−1))

+
n∑

k=1

(Pθ̂k−1
gθ̂k−1

(Xk−1) − Pθ̂k
gθ̂k

(Xk))

+
n∑

k=1

(Pθ̂k
gθ̂k

(Xk) − Pθ̂k−1
gθ̂k−1

(Xk)). (13)
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From the definition of πθ , note that we can write
n∑

k=1

(πθ̂k−1
(f ) − π(f )) =

n∑
k=1

θ̂k−1(fε − π(fε)),

where fε(x) = ε
∑∞

j=0(1 − ε)jP jf (x). Thus,

E

( n∑
k=1

(πθ̂k−1
(f ) − π(f ))

)2

≤
( n∑

k=1

(Eθ̂2
k−1(fε − π(fε)))

1/2
)2

≤ |f |2∞
(n−1∑

k=0

√
Bk

)2

,

where in the last equality, we use the fact that sup|f |∞≤1 Eθ̂2
k (f − π(f )) ≤ Bk , established

in (7) in the proof of Lemma 1.
We now bound the three sums on the right-hand side of (13). By (9), (10), and (11) for any

probability measures θ, θ ′, and x ∈ X,

Pθgθ (x) − Pθ ′gθ ′(x) =
∫

(θ ′ − θ)(dz)

(
ε

∞∑
j=0

j (1 − ε)jP jf (z)

)
.

This implies that∣∣∣∣ n∑
k=1

(Pθ̂k
gθ̂k

(Xk) − Pθ̂k−1
gθ̂k−1

(Xk))

∣∣∣∣ =
∣∣∣∣(θ̂0 − θ̂n)

(
ε

∞∑
j=0

j (1 − ε)jP jf

)∣∣∣∣ ≤ 2(1 − ε)

ε
|f |∞.

Next, observe that∣∣∣∣ n∑
k=1

(Pθ̂k−1
gθ̂k−1

(Xk−1) − Pθ̂k
gθ̂k

(Xk))

∣∣∣∣ = |Pθ̂0
gθ̂0

(X0) − Pθ̂n
gθ̂n

(Xn)|

≤ |gθ̂0
|∞ + |gθ̂n

|∞
≤ 4ε−1|f |∞.

Finally, we also note that
∑n

k=1(gθ̂k−1
(Xk)−Pθ̂k−1

gθ̂k−1
(Xk−1)) =: ∑n

k=1 Dk is a martingale

with respect to {Fn}, whence E(
∑n

k=1 Dk)
2 = ∑n

k=1 ED2
k ≤ 4n supθ |gθ |2∞ ≤ 16ε−2|f |2∞n.

Using all the above, we obtain (3).

2.3. An example on the lower bound

We provide an example where O(n−1) is also the lower bound of the rate for both ‖ηn − π‖TV
and ‖LXn − π‖TV. This shows that the rate in our upper bound in Corollary 1 is optimal.

Example 1. Consider the simple case when X = {±1} and π = πY . In this case, the weight
function is uniform (w ≡ 1). Suppose that the auxiliary chain {Yn}n≥0 has transition matrix

PY =
(

1 − a a

b 1 − b

)
with a, b ∈ (0, 1).

The corresponding Markov chain has stationary distribution πY = (a + b)−1(b, a) and eigen-
values λ1 = 1 and λ2 = 1 − a − b. Suppose that a + b �= 1 and the chain starts at Y0 = −1.
By straightforward calculation, P(Yn = −1) = a/(a + b) + b/(a + b)λn

2, and

Eπ̂Y,n({−1}) − πY ({−1}) =
(

a

a + b

)(
1

n

)(
λ2 − λn+1

2

1 − λ2

)
.

It then follows from the definition that ‖ηn − π‖TV ≥ C/n.
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Furthermore, in (1) set P(x, ·) = π(·). That is, P is the best kernel we can put into the
algorithm, in the sense that it takes one step to arrive at the stationary distribution (although
this is too ideal to be practical). Now,

P(Xn = −1) − π({−1}) = (1 − ε)π({−1}) + εEπ̂Y,n({−1}) − π({−1})
= ε(Eπ̂Y,n({−1}) − πY ({−1})).

It then follows that ‖LXn − π‖TV ≥ C/n.

2.4. The multiple IRMCMC

We discuss a multiple chain IRMCMC algorithm and establish a similar convergence rate
as in Section 2.1 by a repeated application of Theorem 1. For m ≥ 1 and � ∈ {0, . . . , m}, let
π(�) be a probability measure on X, and P� a Markov kernel with invariant distribution π(�)

such that π(m) = π .

Algorithm 2. (The multiple IRMCMC.) Choose (X
(0)
0 , . . . , X

(m)
0 ) = (x

(0)
0 , . . . , x

(m)
0 ) and fix

ε ∈ (0, 1). Given Fn = σ {(X(0)
k , . . . , X

(m)
k ), 0 ≤ k ≤ n}: sample independently X

(0)
n+1 ∼

P0(X
(0)
n , ·), and for 1 ≤ � ≤ m, X

(�)
n+1 ∼ P

�,θ̂
(�−1)
n

(X
(�)
n , ·) with

P�,θ (x, ·) = (1 − ε)P�(x, ·) + εθ(·), θ̂ (�−1)
n (·) =

n∑
i=1

w�(X
(�−1)
i )∑n

j=1 w�(X
(�−1)
j )

δ
X

(�−1)
i

(·),

with w�(x) = π�(x)/π�−1(x), x ∈ X.

To bound ‖L
X

(�)
n

− π�‖TV, it suffices to control

B(�−1)
n � sup

|f |∞≤1
Eπ̂X(�−1),n(f ) + sup

|f |∞≤1
E(π̂X(�−1),n(f ))2, n ∈ N,

where this time π̂X(�),n(f ) � π̂X(�),n(f ) − π�(f ). In fact, it suffices to control B
(0)
n , which is

the purpose of the following assumption.

Assumption 2. As n → ∞, the initial Markov chain {X(0)
n }n≥0 satisfies B

(0)
n ≤ C/n.

Theorem 2. Consider the multiple IRMCMC (Algorithm 2) for which Assumption 2 holds and
max�=1,...,m |w�|∞ < ∞. Then, for � = 1, . . . , m, there exists a finite constant C such that,
for n ≥ 2,

‖L
X

(�)
n

− π�‖TV ≤ C(log n)�−1

n
,

and for any bounded measurable function f ,

E

(
1√
n

n∑
i=1

(f (X
(�)
i ) − π�(f ))

)2

≤ C.

Proof. This follows easily from a repeated application of Theorem 1.
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3. IT algorithm

In this section we consider the IT algorithm as follows. Recall that the auxiliary chain
{Yn}n≥0 evolves independently from the main chain {Xn}n≥0.

Algorithm 3. (The IT algorithm.) Fix ε ∈ (0, 1). Start at X0 = x0 and Y0 = y0. At each
round n, generate

Xn ∼
{

P(Xn−1, ·) w.p. 1 − ε,

Kπ̂Y,n−1(Xn−1, ·) w.p. ε,

where θ̂n = π̂Y,n is the empirical measure associated to {Yn}n≥0 and Kθ is defined by

Kθ(x, A) = 1A(x) +
∫

X

(
1 ∧ π(z)πY (x)

π(x)πY (z)

)
(1A(z) − 1A(x))θ(dz).

In other words, for all nonnegative functions h : X → R and n ∈ N,

Ex(h(Xn+1) | Fn) = Pπ̂Y,n
h(Xn) almost surely,

where for any probability measure θ on X, Pθ is defined as

Pθ(x, A) = (1 − ε)P (x, A) + εKθ(x, A).

Recall that, we write π(dx) ≡ π(x)dx and similarly for πY with a little abuse of notation, and
w(x) = π(x)/πY (x). We assume that |w|∞ < ∞.

The kernel KπY
is the independent Metropolis kernel with target π and proposal πY . It is well

known that under the assumption |w|∞ < ∞ (recall Remark 1), the kernel KπY
is uniformly

ergodic [13], and this property is inherited by PπY
. That is, there exists C0 < ∞, ρ ∈ (0, 1)

such that
‖P n

πY
(x, ·) − π(·)‖TV ≤ C0ρ

n, n ≥ 0. (14)

3.1. Convergence rate of the IT algorithm

We make the following assumptions.

Assumption 3. There exists a finite universal constant C such that for any measurable function
f : X → R, with |f |∞ ≤ 1,

sup
n

P

(∣∣∣∣ 1√
n

n∑
j=1

(f (Yj ) − πY (f ))

∣∣∣∣ > x

)
≤ C exp

(
− x2

Cσ 2(f )

)
,

where σ 2(f ) � varπY
(f ).

Assumption 4. The function w : X → R is continuous (with respect to the metric on X), and

sup
x∈X

φ(x)

w2(x)
< ∞, (15)

where φ(x) � πY ({z : w(z) ≤ w(x)}).
Assumption 5. The kernel P is such that if f : X → R is continuous, then Pf is also
continuous.
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Remark 4. The deviation bound appears naturally in the proof of Assumption 3 although these
types of bound are not widely available for Markov chains. A continuous-time version appeared
in [8, Proposition 1.2] but extension to discrete-time Markov chains along the same arguments
is apparently not straightforward.

Remark 5. Assumption 4 can be difficult to check in practice, but is not overly restrictive. For
example, consider X = R and πY = πT with some T ∈ (0, 1). For the sake of simplicity,
we focus on x ∈ R+ and define φ+(x) � πY ({z > 0 : w(z) ≤ w(x)}). Suppose that the
density π(x) decays asymptotically as x−α for α > 1 as x → ∞. Then, πY (x) ∼ x−T α

and w(x) ∼ x(T −1)α . Here and below, we write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1.
Furthermore, assume that T α > 1. Then, φ+(x) ∼ (T α − 1)−1x1−T α and φ+(x)/w2(x) ∼
1/(T α − 1)x1+2α−3T α . Therefore, (15) holds if T > (1 + 2α)/(3α).

Theorem 3. Consider the IT algorithm described above and suppose that Assumptions 3–5
hold. Then there exists a constant C such that for all continuous bounded functions f : X → R

and n ∈ N,

|E(f (Xn) − π(f ))| ≤ C|f |∞√
n

.

Proof. Fix n ≥ 2 and 1 ≤ q ≤ n. Fix f : X → R with |f |∞ = 1. Then write

Exf (Xn) − P n
πY

f (x) = Ex(P
n−q
πY

f (Xq) − P n
πY

f (x)) − Ex(P
n−q
πY

f (Xq) − f (Xn)).

For the first term, we can use (14) to obtain |Ex(P
n−q
πY

f (Xq) − P n
πY

f (x))| ≤ Cρn−q for some
finite constant C that does not depend on f . For the second term, we write

Ex(P
n−q
πY

f (Xq) − f (Xn)) = Ex

(n−1∑
j=q

(P n−j
πY

f (Xj ) − P n−j−1
πY

f (Xj+1))

)

=
n−1∑
j=q

Ex(P
n−j
πY

f (Xj ) − Ex(P
n−j−1
πY

f (Xj+1) | Fj ))

=
n−1∑
j=q

Ex(P
n−j
πY

f (Xj ) − Pπ̂Y,j
P n−j−1

πY
f (Xj ))

=
n−1∑
j=q

C0ρ
n−j−1

Ex((PπY
− Pπ̂Y,j

)ζn,j (Xj )), (16)

where in the last line, we write

ζn,j (x) = P
n−j−1
πY

(f (x) − πY (f ))

C0ρn−j−1 , x ∈ X,

with C0 and ρ chosen as in (14). As a consequence of (14), we have |ζn,j |∞ ≤ 1. It is also
continuous by the continuity of f and Assumption 5.

To simplify the notation, for any function g : X → R, define

Hg(x, z) � α(x, z)(g(z) − g(x)), x, z ∈ X, (17)
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where

α(x, z) � 1 ∧ w(z)

w(x)
.

Thus, we can write

Pθg(x) − PπY
g(x) = ε

∫
Hg(x, z)(θ(dz) − πY (dz)).

For any g : X → R, we introduce the class of functions Fg � {z �→ Hg(x, z) : x ∈ X}, and
the empirical process

Gn(h) � 1√
n

n∑
j=1

(h(Yj ) − πY (h)), h ∈ Fg.

Therefore, the expectation term in (16) can be written as

Ex((PπY
− Pπ̂Y,j

)ζn,j (Xj )) = εEx

(∫
Hζn,j

(Xj , z)(πY (dz) − π̂Y,j (dz))

)

= −εEx

(
1

j

j∑
�=1

Hζn,j
(Xj , Y�) −

∫
X

Hζn,j
(Xj , z)πY (dz)

)
= − ε√

j
Ex(Gj (Hζn,j

(Xj , ·))),

whence,

|Ex(P
n−q
πY

f (Xq) − f (Xn))| =
∣∣∣∣ε n−1∑

j=q

C0ρ
n−j−1

√
j

Ex(Gj (Hζn,j
(Xj , ·)))

∣∣∣∣
≤ C0

n−1∑
j=q

ρn−j−1

√
j

Ex

(
sup

h∈Fζn,j

|Gj (h)|
)
.

In Lemma 2 below, we prove that for any continuous function g : X → R such that |g|∞ ≤ 1,
Ex(suph∈Fg

|Gn(h)|) ≤ C for some constant C that does not depend on n nor g. We conclude
that

|Ex(P
n−q
πY

f (Xq) − f (Xn))| ≤ C

n−1∑
j=q

1√
j

ρn−j−1.

Thus, for any 1 ≤ q ≤ n,

|Ex(f (Xn)) − πY (f )| ≤ C

{
ρn + ρn−q + ε

n−1∑
j=q

ρn−j−1

√
j

}
≤ Cn−1/2

by choosing q = n − �− log n/2 log ρ
.

We rely on the following technical result on the auxiliary chain {Yn}n≥0.

Lemma 2. Suppose that Assumptions 3 and 4 hold. Then there exists a constant C such that,
for all continuous functions g : X → R such that |g|∞ ≤ 1,

sup
n∈N

Ex

(
sup
h∈Fg

|Gn(h)|
)

≤ C.
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Proof. Throughout the proof n ≥ 1 is fixed. Assumption 3 suggests the following metric
on Fg:

d(h1, h2) = σ(h1 − h2) =
(∫

X
(h1(x) − h2(x))2πY (dx)

)1/2

,

which has the following properties. For x1, x2 ∈ X, it is easy to check that

|Hg(x1, z) − Hg(x2, z)| ≤ 2|α(x1, z) − α(x2, z)| + |g(x1) − g(x2)|. (18)

It follows that

d(Hg(x1, ·), Hg(x2, ·))

≤ √
2|g(x1) − g(x2)| + 2

√
2

√∫
|α(x1, z) − α(x2, z)|2πY (dz). (19)

This implies that the diameter of Fg is bounded by δ(Fg) = 4
√

2. It also implies that with
respect to d, the empirical process {Gn(h), h ∈ Fg} is separable. Indeed, for x ∈ X arbitrary
and h = Hg(x, ·), using the Polish assumption, we can find a sequence xm ∈ X (xm belongs to a
countable subset of X) such that xm → x as m → ∞. Setting hm = Hg(xm, ·), it follows from
(19) and the continuity of g and w that hm → h in (Fg, d), and from (18) it is easy to show that
Gn(hm)−Gn(h) = n−1/2∑n

�=1(Hg(x, Y�)−Hg(xm, Y�))+√
nπY (Hg(x, ·)−Hg(xm, ·)) → 0

as m → ∞ for all realizations of {Y1, . . . , Yn}.
For any h1, h2 ∈ Fg , Assumption 3 implies that for any x > 0,

Px(|Gn(h1) − Gn(h2)| > x) ≤ C exp

(
− x2

cd2(h1, h2)

)
.

Here, the constant C above is universal for all g such that |g|∞ ≤ 1. Indeed, (17) implies
that for such a function g, h ∈ Fg implies |h|∞ ≤ 2. Then, we apply [15, Corollary 2.2.8] to
conclude that for h0,g ∈ Fg , there exists a constant C independent of g such that

Ex

(
sup
h∈Fg

|Gn(h)|
)

≤ Ex |Gn(h0,g)| + C

∫ δ(Fg)

0

√
1 + log D(ε, Fg, d) dε < ∞,

where D(ε, Fg, d) is the packing number of Fg with respect to d. Since all elements of Fg have
a sup-norm of at most 2, Assumption 3 implies that supn∈N Ex |Gn(h0,g)| ≤ C < ∞, where
C does not depend on g. To control the entropy number, we further bound the right-hand side
of (19).

Without loss of generality, assume that x1, x2 ∈ X and w(x1) < w(x2). If w(x1)∨w(x2) ≤
w(z) then α(x1, z) − α(x2, z) = 0. If w(z) ≤ w(x1) then

|α(x1, z) − α(x2, z)|2 =
∣∣∣∣ w(z)

w(x1)
− w(z)

w(x2)

∣∣∣∣2

≤ 1

w(x1)2 (w(x2) − w(x1))
2.

If w(x1) ≤ w(z) ≤ w(x2) then

|α(x1, z) − α(x2, z)|2 =
∣∣∣∣1 − w(z)

w(x2)

∣∣∣∣2

≤ 1

w(x2)2 (w(x2) − w(x1))
2.
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Thus, ∫
|α(x1, z) − α(x2, z)|2πY (dz) ≤

(
φ(x1)

w(x1)2 + φ(x2)

w(x2)2

)
(w(x2) − w(x1))

2

≤ C(w(x2) − w(x1))
2,

where φ(x) � πY ({z : w(z) ≤ w(x)}), and the last inequality follows from Assumption 4.
Together with (19), we conclude from this bound that there exists a constant C0 independent
of g such that

d(Hg(x1, ·), Hg(x2, ·)) ≤ C0(|g(x1) − g(x2)| + |w(x2) − w(x1)|). (20)

Since |g|∞ ≤ 1 and w(x) ∈ [0, |w|∞], this implies that the ε-packing number of (Fg, d) is
at most of order ε−2, independent of g. A detailed proof is provided below. It follows that∫ δ(Fg)

0

√
1 + log D(ε, Fg, d) dε ≤ C

∫ δ(Fg)

0

√
1 + log(1/ε) dε < ∞, which proves the lemma.

To complete the proof, we show that the ε-packing number of (Fg, d) is at most of order
ε−2, independent of g. That is, the cardinality of any ε-separate set is at most of order ε−2

(recall that a set is an ε-separate set if any two points of this set have distance larger than ε).
Note that the functions in Fg are indexed by x ∈ X.

Firstly, one can divide the set X into N = �2/ε
+1 disjoint subsets S(1), . . . , S(N), so that
for every two points x, y within the same S(i), |g(x)−g(y)| < ε. Note that N does not depend
on g. For example, consider g−1([−1, −1 + ε]), g−1((−1 + ε, −1 + 2ε]), . . . , g−1((−1 +
(N − 1)ε, 1]).

Secondly, for each set S(i), one can again divide it into N ′ = �|w|∞/ε
 + 1 disjoint
subsets, denoted by S(i, j), j = 1, . . . , N ′, so that within each S(i, j) for every two points
x, y, |w(x) − w(y)| < ε.

Finally, {S(i, j)}i=1,...,N,j=1,...,N ′ forms a disjoint partition of X. The construction and (20)
requires that any 2C0ε-separate set contains at most one point in each S(i, j). Therefore, the
ε-packing number is at most of order 1/ε2.
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