Published online by Cambridge University Press: 14 July 2016
Let X(t) be a temporally homogeneous irreducible Markov chain in continuous time defined on . For k < i < j, let H = {k + 1, ···, j − 1} and let kTij (jTik) be the upward (downward) conditional first-passage time of X(t) from i to j(k) given no visit to . These conditional passage times are studied through first-passage times of a modified chain HX(t) constructed by making the set of states absorbing. It will be shown that the densities of kTij and jTik for any birth-death process are unimodal and the modes kmij (jmik) of the unimodal densities are non-increasing (non-decreasing) with respect to i. Some distribution properties of kTij and jTik for a time-reversible Markov chain are presented. Symmetry among kTij, jTik, and is also discussed, where , and are conditional passage times of the reversed process of X(t).