Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:46:13.869Z Has data issue: false hasContentIssue false

Limit laws for the maxima of chain-dependent sequences with positive extremal index

Published online by Cambridge University Press:  14 July 2016

K. F. Turkman*
Affiliation:
CEAUL, University of Lisbon
M. F. Oliveira*
Affiliation:
CEAUL, University of Lisbon
*
Postal address for both authors: Universidade de Lisboa, Departamento de Estatística, Investigação Operacional e Computaçã o, Bloco C/2 — Campo Grande, Cidade Universitária, 1700 Lisboa, Portugal.
Postal address for both authors: Universidade de Lisboa, Departamento de Estatística, Investigação Operacional e Computaçã o, Bloco C/2 — Campo Grande, Cidade Universitária, 1700 Lisboa, Portugal.

Abstract

We extend the results on the extremal properties of chain-dependent sequences considered in Turkman and Walker (1983) by assuming conditions similar to those given by Leadbetter and Nandagopalan (1987) which permit clustering of high values.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Denzel, G. E. and O'Brien, G. L. (1975) Limit theorems for extreme values of chain-dependent processes. Ann. Prob. 3, 773779.Google Scholar
Fabens, A. J. and Neuts, M. F. (1970) The limiting distribution of the maximum term in a sequence of random variables defined on a Markov chain. J. Appl. Prob. 7, 754760.Google Scholar
Hüsler, J. (1983) Asymptotic approximation of crossing probabilities of random sequences. Z. Wahrscheinlichkeitsth. 63, 257270.Google Scholar
Hüsler, J. (1986) Extreme values of non-stationary random sequences. J. Appl. Prob. 23, 937950.Google Scholar
Leadbetter, M. R. (1974) On extreme values in stationary sequences. Z. Wahrscheinlichkeitsth. 28, 289303.Google Scholar
Leadbetter, M. R. and Nandagopalan, S. (1987) On exceedence point processes for stationary sequences under mild oscillation restrictions. Proceedings of Extreme Value Theory Conference, Oberwolfach, Springer-Verlag, Berlin.Google Scholar
Resnick, S. I. (1971) Asymptotic location and recurrence properties of maxima of a sequence of random variables defined on a Markov chain. Z. Wahrscheinlichkeitsth. 18, 197217.Google Scholar
Resnick, S. I. (1972) Stability of maxima of random variables defined on a Markov chain. Adv. Appl. Prob. 4, 285295.Google Scholar
Resnick, S. I. and Neuts, M. F. (1970) Limit laws for maxima of a sequence of random variables defined on a Markov chain. Adv. Appl. Prob. 2, 323343.Google Scholar
Turkman, K. F. and Walker, A. M. (1983) Limit laws for the maxima of a class of quasi stationary sequences. J. Appl. Prob. 20, 814821.Google Scholar