Hostname: page-component-f554764f5-8cg97 Total loading time: 0 Render date: 2025-04-14T16:04:11.775Z Has data issue: false hasContentIssue false

Inequalities and bounds for expected order statistics from transform-ordered families

Published online by Cambridge University Press:  08 April 2025

Idir Arab*
Affiliation:
University of Coimbra
Tommaso Lando*
Affiliation:
University Bergamo
Paulo Eduardo Oliveira*
Affiliation:
University of Coimbra
*
*Postal address: Centro de Matemática da Universidade de Coimbra, Department of Mathematics, University of Coimbra, Portugal.
***Postal address: Department of Economics, University of Bergamo, Italy. Email: [email protected]
*Postal address: Centro de Matemática da Universidade de Coimbra, Department of Mathematics, University of Coimbra, Portugal.

Abstract

We introduce a comprehensive method for establishing stochastic orders among order statistics in the independent and identically distributed case. This approach relies on the assumption that the underlying distribution is linked to a reference distribution through a transform order. Notably, this method exhibits broad applicability, particularly since several well-known nonparametric distribution families can be defined using relevant transform orders, including the convex and the star transform orders. Moreover, for convex-ordered families, we show that an application of Jensen’s inequality gives bounds for the probability that a random variable exceeds the expected value of its corresponding order statistic.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ali, M. M. and Chan, L. K. 1965. Some bounds for expected values of order statistics. Ann. Math. Statist. 36, 10551057. doi: 10.1214/aoms/1177700081.CrossRefGoogle Scholar
Arab, I., Oliveira, P. E. and Wiklund, T. 2021. Convex transform order of beta distributions with some consequences. Stat. Neerl. 75, 238256. doi: 10.1111/stan.12233.CrossRefGoogle Scholar
Arnold, B. C. and Nagaraja, H. 1991. Lorenz ordering of exponential order statistics. Statist. Prob. Lett. 11, 485490. doi: 10.1016/0167-7152(91)90112-5.CrossRefGoogle Scholar
Arnold, B. C. and Villaseñor, J. A. 1991. Lorenz ordering of order statistics. In Stochastic Orders and Decision Under Risk (Hamburg, 1989) (IMS Lecture Notes Monogr. Ser. 19). Institute of Mathematical Statistics, Hayward, CA, pp. 3847. doi: 10.1214/lnms/1215459848.CrossRefGoogle Scholar
Groeneboom, P. and Jongbloed, G. 2014. Nonparametric Estimation Under Shape Constraints (Camb. Ser. Statist. Prob. Math. 38). Cambridge University Press, New York. doi: 10.1017/CBO9781139020893.CrossRefGoogle Scholar
Jones, M. C. 2004. Families of distributions arising from distributions of order statistics. Test 13, 143. doi: 10.1007/BF02602999.CrossRefGoogle Scholar
Kochar, S. 2006. Lorenz ordering of order statistics. Statist. Prob. Lett, 76, 18551860. doi: 10.1016/j.spl.2006.04.032.CrossRefGoogle Scholar
Kochar, S. 2012. Stochastic comparisons of order statistics and spacings: A review. ISRN Prob. Statist. 2012, 839473. doi: 10.5402/2012/839473.CrossRefGoogle Scholar
Kochar, S. and Xu, M. 2009. Comparisons of parallel systems according to the convex transform order. J. Appl. Prob. 46, 342352. doi: 10.1239/jap/1245676091.CrossRefGoogle Scholar
Kundu, A. and Chowdhury, S. 2016. Ordering properties of order statistics from heterogeneous exponentiated Weibull models. Statist. Prob. Lett. 114, 119127. doi: 10.1016/j.spl.2016.03.017.CrossRefGoogle Scholar
Lando, T. 2023. Testing departures from the increasing hazard rate property. Statist. Prob. Lett. 193, 109736. doi: 10.1016/j.spl.2022.109736.CrossRefGoogle Scholar
Lando, T., Arab, I. and Oliveira, P. E. 2021. Second-order stochastic comparisons of order statistics. Statistics 55, 561579. doi: 10.1080/02331888.2021.1960527.CrossRefGoogle Scholar
Lando, T., Arab, I. and Oliveira, P. E. 2022. Properties of increasing odds rate distributions with a statistical application. J. Statist. Planning Infer. 221, 313325. doi: 10.1016/j.jspi.2022.05.004.CrossRefGoogle Scholar
Lando, T., Arab, I. and Oliveira, P. E. 2023. Nonparametric inference about increasing odds rate distributions. J. Nonparametric Statist. 36, 435454. doi: 10.1080/10485252.2023.2220050.CrossRefGoogle Scholar
Lando, T., Arab, I. and Oliveira, P. E. 2023. Transform orders and stochastic monotonicity of statistical functionals. Scand. J. Statist. 50, 11831200. doi: 10.1111/sjos.12629.CrossRefGoogle Scholar
Marshall, A. W. and Olkin, I. 2007. Life Distributions. Springer, New York.Google Scholar
Müller, A. 1997. Stochastic orders generated by integrals: A unified study. Adv. Appl. Prob. 29, 414428. doi: 10.2307/1428010.CrossRefGoogle Scholar
Nichols, M. D. and Padgett, W. J. 2006. A bootstrap control chart for Weibull percentiles. Quality Reliability Eng. Int. 22, 141151. doi: 10.1002/qre.691.CrossRefGoogle Scholar
Sengupta, D. and Paul, D. 2005. Some tests for log-concavity of life distributions. Preprint, available at http://anson.ucdavis.edu/debashis/techrep/logconca.pdf.Google Scholar
Shaked, M. and Shanthikumar, J. G. 2007. Stochastic Orders. Springer, New York. doi: 10.1007/978-0-387-34675-5.CrossRefGoogle Scholar
Viola, C. 2016. An Introduction to Special Functions. Springer, Cham. doi: 10.1007/978-3-319-41345-7.CrossRefGoogle Scholar
Wilfling, B. 1996. Lorenz ordering of power-function order statistics. Statist. Prob. Lett. 30, 313319. doi: 10.1016/S0167-7152(95)00234-0.CrossRefGoogle Scholar
Zimmer, W. J., Wang, Y. and Pathak, P. K. 1998. Log-odds rate and monotone log-odds rate distributions. J. Quality Technology 30, 376385. doi: 10.1080/00224065.1998.11979873.CrossRefGoogle Scholar