Published online by Cambridge University Press: 14 July 2016
We study a family of Markov processes on P (k), the space of partitions of the natural numbers with at most k blocks. The process can be constructed from a Poisson point process on R + x ∏i=1 k P (k) with intensity dt ⊗ ϱν (k), where ϱν is the distribution of the paintbox based on the probability measure ν on P m, the set of ranked-mass partitions of 1, and ϱν (k) is the product measure on ∏i=1 k P (k). We show that these processes possess a unique stationary measure, and we discuss a particular set of reversible processes for which transition probabilities can be written down explicitly.