Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T12:06:01.889Z Has data issue: false hasContentIssue false

Organic selenium in animal nutrition – utilisation, metabolism, storage and comparison with other selenium sources

Published online by Cambridge University Press:  09 December 2016

F. W. Edens*
Affiliation:
Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7635, USA
A. E. Sefton
Affiliation:
Alltech, Inc., Nicholasville, KY 40356, USA
*
*Corresponding author: [email protected]

Summary

The importance of selenium as a key component of antioxidant systems in animals is well recognised due to much research about this mineral in many species. Selenium is required as part of the antioxidant enzyme structure and plays a major role in various protective systems in animal physiology, including immunity, cellular stability and DNA protection. The following review is the first in a series of three which details the importance of selenium in animal nutrition, and how the chemically organic form, which is akin to the form of the mineral in natural feed materials, can provide increased benefits in utilisation, storage and metabolism compared to inorganic sources.

Type
Review Paper
Copyright
Copyright © Cambridge University Press and Journal of Applied Animal Nutrition Ltd. 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahsan, H., Ali, A., and Ali, R. (2003) Oxygen free radicals and systemic autoimmunity. Clinical and Experimental Immunology, 131: 398404.CrossRefGoogle ScholarPubMed
Amberg, R., Mizutani, T., Wu, X.Q., and Gross, H.J. (1996) Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). Journal of Molecular Biology, 263: 819.CrossRefGoogle ScholarPubMed
Aoyama, K., and Nakaki, T. (2015) Glutathione in cellular redox homeostasis: association with the excitatory amino acid carrier 1 (EAAC1). Molecules, 20: 87428758.CrossRefGoogle ScholarPubMed
Arteel, G.E., and Sies, H. (2001) The biochemistry of selenium and the glutathione system. Environmental Toxicology and Pharmacology, 10: 153158.CrossRefGoogle ScholarPubMed
Arthur, J.R. (1997) Non-glutathione peroxidase functions of selenium. in: Jacques, K.A. and Lyons, T.P. (Eds.), Biotechnology in the Feed Industry, pp. 143154 (Nottingham, United Kingdom, Nottingham University Press).Google Scholar
Asghar, A., Lin, C.F., Gray, J.I., Buckley, D.J., Booren, A.M., Crackel, R.L., and Flegal, C.J. (1989) Influence of oxidised dietary oil and antioxidant supplementation on membrane-bound lipid stability in broiler meat. British Poultry Science, 30: 815823.CrossRefGoogle ScholarPubMed
Azad, M.A. K., Kikusato, M., Maekawa, T., Shirakawa, H., and Toyomizu, M. (2010) Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155: 401406.CrossRefGoogle ScholarPubMed
Bartoli, M., and Sies, H. (1978) Reduced and oxidised glutathione efflux from liver. FEBS Letters, 86: 8991.CrossRefGoogle ScholarPubMed
Beilstein, M.A., and Whanger, P.D. (1986) Chemical forms of selenium in rat tissues after administration of selenite or selenomethionine. Journal of Nutrition, 116: 17111719.CrossRefGoogle ScholarPubMed
Bermingham, E.N., Hesketh, J.E., Sinclair, B.R., Koolaard, J.P., and Roy, N.C. (2014) Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: A meta-analysis. Nutrients, 6: 40024031.CrossRefGoogle ScholarPubMed
Berzelius, J.J. (1817) Sur deux métaux nouveaux (litium et sélénium). Schweigger's Journal für Chemie und Physik, 21: 18161823.Google Scholar
Blough, N.V., and Zafiriou, O.C. (1985) Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline solution. Inorganic Chemistry, 24: 35023504.CrossRefGoogle Scholar
Brannan, R.G., Connolly, B.J., and Decker, E.A. (2001) Peroxynitrite: a potential initiator of lipid oxidation in food. Trends Food Science Technology, 12: 164173.CrossRefGoogle Scholar
Brigelius-Flohé, R., and Maiorino, M. (2013) Glutathione peroxidases. Biochimica et Biophysica Acta, 1830: 32893303.CrossRefGoogle ScholarPubMed
Briviba, K., Roussyn, I., Sharov, V.S., and Sies, H. (1996) Attenuation of oxidation and nitration reactions of peroxynitrite by selenomethionine, selenocysteine and ebselen. Biochemical Journal, 319: 1315.CrossRefGoogle Scholar
Buckley, D.J., Gray, J.I., Asghar, A., Price, J.F., Crackel, R.L., Booren, A.M., Pearson, A.M., and Miller, E.R. (1989) Effects of dietary antioxidants and oxidised oil on membranal lipid stability and pork product quality. Journal of Agricultural and Food Chemistry, 54: 11931197.Google Scholar
Burk, R.F. (1983) Biological activity of selenium. Annual Review of Nutrition, 3: 5370.CrossRefGoogle ScholarPubMed
Burk, R.F. (1991) Molecular biology of selenium with implications for its metabolism. FASEB Journal, 5: 22742279.CrossRefGoogle ScholarPubMed
Burk, R.F., and Hill, K.E. (1993) Regulation of selenoproteins. Annual Review of Nutrition, 13: 6581.CrossRefGoogle ScholarPubMed
Burk, F.F., and Hill, K.E. (2015) Regulation of selenium metabolism and transport. Annual Review of Nutrition, 35: 109134.CrossRefGoogle ScholarPubMed
Burnell, J.N., and Whatley, F.R. (1977) Sulfur metabolism in Paracoccus denitrificans: Purification, properties, and regulation of cysteinyl- and methionyl-tRNA synthetase. Biochemica et Biophysica Acta, 481: 266278.CrossRefGoogle ScholarPubMed
Butler, G.W., and Peterson, P.J. (1967) Uptake and metabolism of inorganic forms of selenium-75 by Spiroldela oligorrhiza . Australian Journal of Biological Sciences, 20: 77.1.CrossRefGoogle Scholar
Cai, X., Block, E., Uden, P.C., Zhang, X., Quimby, B.D., and Sullivan, J.J. (1995) Allium Chemistry: Identification of selenoamino acids in ordinary and selenium-enriched garlic, onion and broccoli using gas chromatography with atomic emission detection. Journal of Agricultural and Food Chemistry, 43: 17541757.CrossRefGoogle Scholar
Cohen, G., and Hochstein, P. (1963) Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry, 2: 14201428.CrossRefGoogle ScholarPubMed
Combs, G.F. Jr. (1986) The Role of Selenium in Nutrition. (Orlando, Florida 32887, Academic Press, Inc.).Google Scholar
Combs, G.F. Jr., and Combs, S.B. (1984) The nutritional biochemistry of selenium. Annual Review of Nutrition, 4: 257280.CrossRefGoogle ScholarPubMed
Csallany, A.S., and Menken, B.Z. (1986) Effect of dietary selenite on hepatic organic solvent-soluble lipofuscin pigments. Journal of the American College of Toxicology, 5: 7985.CrossRefGoogle Scholar
Cummins, L.M., and Martin, J.L. (1967) Are selenocystine and selenomethionine synthesised in vivo from sodium selenite in mammals? Biochemistry, 6: 31623168.CrossRefGoogle ScholarPubMed
Daniels, L.A. (1996) Selenium metabolism and bioavailability. Biological Trace Element Research, 54: 185199.CrossRefGoogle ScholarPubMed
Daun, C., and Åkesson, B. (2004) Glutathione peroxidase activity, and content of total and soluble selenium in five bovine and porcine organs used in meat production. Meat Science, 66: 801807.CrossRefGoogle ScholarPubMed
Daun, C., Johansson, M., Önning, G., and Åkesson, B. (2001) Glutathione peroxidase activity, tissue and soluble selenium content in beef and pork in relation to meat ageing and pig RN phenotype. Food Chemistry, 73: 313319.CrossRefGoogle Scholar
Daun, C., Lundh, T., Őnning, G., and Åkesson, B. (2004) Separation of soluble selenium compounds in muscle from seven animals species using size exclusion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 19: 129134.CrossRefGoogle Scholar
Davies, K.J.A. (1987) Protein damage and degradation by oxygen radicals. I. General aspects. Journal of Biological Chemistry, 262: 98959901.Google ScholarPubMed
Deagan, J.T., Butler, J.A., Beilstein, M.A., and Whanger, P.D. (1987) Effects of dietary selenite, selenocysteine, and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues. Journal of Nutrition, 117: 9198.CrossRefGoogle Scholar
de Lima, V.R., Morfima, M.P., Teixeiraa, A., and Creczynski-Pasa, T.B. (2004) Relationship between the action of reactive oxygen and nitrogen species on bilayer membranes and antioxidants. Chemistry and Physics of Lipids, 132: 197208.CrossRefGoogle ScholarPubMed
Delles, R.M., Xiong, Y.L., True, A.D., Ao, T., and Dawson, K.A. (2014) Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poultry Science, 93: 15611570.CrossRefGoogle ScholarPubMed
Delles, R.M., Xiong, Y.L., True, A.D., Ao, T., and Dawson, K.A. (2015) Augmentation of water-holding and textural properties of breast meat from oxidatively stressed broilers by dietary antioxidant regimens. British Poultry Science, 56: 304314.CrossRefGoogle ScholarPubMed
Dickenson, D.A., and Forman, H.J. (2002) Cellular glutathione and thiols metabolism. Biochemical Pharmacology, 64: 10191026.CrossRefGoogle Scholar
Edens, F.W., and Gowdy, K.M. (2004) Selenium sources and selenoproteins in practical poultry production. in: Lyons, T.P., and Jacques, K.A. (Eds.) Nutritional Biotechnology in the Feed and Food Industries, pp. 3555 (Nottingham, United Kingdom, Nottingham University Press).Google Scholar
Eisenberg, S. (2007) Relative stability of selenites and selenates in feed premixes as a function of water activity. Journal of AOAC International, 90: 349353.CrossRefGoogle ScholarPubMed
Esaki, N., Nakamura, T., Tanaka, H., Suzuki, T., Morino, Y., and Soda, K. (1981) Enzymatic synthesis of selenocysteine in rat liver. Biochemistry, 20: 44924496.CrossRefGoogle ScholarPubMed
Fellenberg, M.A., and Speisky, H. (2006) Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World's Poultry Science Journal, 62: 5364.CrossRefGoogle Scholar
Forman, H.J., Zhang, H., and Rinna, A. (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30: 112.CrossRefGoogle ScholarPubMed
Foster, L.H., and Sumar, S. (1997) Selenium in health and disease. Critical Reviews in Food Science and Nutrition, 37: 211228.CrossRefGoogle ScholarPubMed
Franke, K.W. (1934) A new toxicant occurring naturally in certain samples of plant foodstuffs. I . Results obtained in preliminary feeding trials. Journal of Nutrition, 8: 597608.CrossRefGoogle Scholar
Franke, K.W., and Painter, E.P. (1937) Effect of sulfur additions on seleniferous soils. Binding of selenium by soil. Journal of Industrial and Engineering Chemistry 29: 591595.CrossRefGoogle Scholar
Ganther, H.E. (1986) Pathways of selenium metabolism including respiratory excretory products. Journal of the American College of Toxicology, 5: 15.CrossRefGoogle Scholar
Geering, H.R., Cary, E.E., Jones, L.H. P., and Allaway, W.H. (1968) Solubility and redox criteria for the possible forms of selenium in soils. Soil Science Society of America, Proceedings, 32: 3540.CrossRefGoogle Scholar
Gonzalez, M.J. (1990) Ascorbic acid and selenium interaction: Its relevance in carcinogenesis. Journal of Orthomolecular Medicine, 5: 6769.Google Scholar
Gowdy, K.M. (2004) Selenium Supplementation and Antioxidant Protection in Broiler Chickens . Master of Science Thesis, North Carolina State University Graduate School, Raleigh, NC 27695Google Scholar
Gregus, Z., Perjési, P., and Gyurasics, Á. (1998) Enhancement of selenium excretion in bile by sulfobromophthalein: Elucidation of the mechanism. Biochemical Pharmacolology, 56: 13911402.CrossRefGoogle ScholarPubMed
Gyurasics, Á., Perjési, P., and Gregus, Z. (1998) Role of glutathione and methylation in the biliary excretion of selenium. The paradoxical effect of sulfobromphthalein. Biochemical Pharmacolology, 56: 13811389.CrossRefGoogle Scholar
Hafeman, D.G., Sunde, R.A., and Hoekstra, W.G. (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. Journal of Nutrition, 104: 580587.CrossRefGoogle ScholarPubMed
Hansson, E., and Jacobsson, S.-O. (1966) Uptake of (75Se) selenomethionine in the tissues of the mouse studied by whole-body autoradiography. Biochimica et Biophysica Acta, 115: 285293.CrossRefGoogle ScholarPubMed
Hawkes, W.C., Wilhelmsen, E.C., and Tappel, A.L. (1985a) Abundance and tissue distribution of selenocysteine-containing proteins in the rat. Journal of Inorganic Biochemistry, 23: 7792.CrossRefGoogle ScholarPubMed
Hawkes, W.C., Wilhelmsen, E.C., and Tappel, A.L. (1985b) Subcellular distribution of selenium containing proteins in the rat. Journal of Inorganic Biochemistry, 25: 7793.CrossRefGoogle ScholarPubMed
Heinz, G.H., Hoffman, D.J., and Gold, L.G. (1988) Toxicity of organic and inorganic selenium to mallard ducklings. Environmental Toxicology and Chemistry, 17: 561568.CrossRefGoogle ScholarPubMed
Heinz, G.H., Hoffman, D.J., and LeCaptain, L.J. (1996) Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenised yeast to mallard ducklings. Archives of Environmental Contamination and Toxicology, 30: 9399.CrossRefGoogle Scholar
Hoffman, D.J., Heinz, G.H., LeCaptain, L.J., Bunck, C.M., and Green, D.E. (1991) Subchronic hepatotoxicity of selenomethionine ingestion in mallard ducks. Journal of Toxicology and Environmental Health, 32: 449464.CrossRefGoogle ScholarPubMed
Holben, D.H., and Smith, A.M. (1999) The diverse role of selenium within selenoproteins: a review. Journal of the American Dietetic Association, 99: 836843.CrossRefGoogle ScholarPubMed
Horan, K.L., Lutzke, B.S., Cazers, A.R., McCall, J.M., and Epps, D.E. (1994) Kinetic evaluation of lipophilic inhibitors of lipid peroxidation in DLPC liposomes. Free Radicals in Biology and Medicine, 17: 587596.CrossRefGoogle ScholarPubMed
Hsieh, H.S., and Ganther, H.E. (1975) Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemistry, 14: 16321636.CrossRefGoogle ScholarPubMed
Hughes, R.E. (1964) Reduction of dehydroascorbic acid by animal tissues. Nature, 203: 10681069.CrossRefGoogle Scholar
International Programme on Chemical Safety (IPCS) (1987) Environmental Health Criteria 58. Selenium. World Health Organisation, Geneva, Switzerland.Google Scholar
Igene, J.O., and Pearson, A.M. (1979) Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems. Journal of Food Science, 44: 12851290.CrossRefGoogle Scholar
Ip, C. (1986) Interaction of vitamin C and selenium supplementation in the modification of mammary carcinogenesis in rats. Journal of the National Cancer Institute, 77: 299303.Google ScholarPubMed
Ip, C., and Hayes, C. (1989) Tissue selenium levels in selenium-supplemented rats and their relevance in mammary cancer protection. Carcinogenesis, 10: 921925.CrossRefGoogle ScholarPubMed
Johansson, L., Gafvelin, G., and Arnér, E.S. J. (2005) Selenocysteine in proteins- properties and bioptechnological use. Biochimica et Biophysica Acta, 1726: 113.CrossRefGoogle ScholarPubMed
Johnson, V.J., Tsunoda, M., and Sharma, R.P. (2000) Increased production of proinflammatory cytokines by murine macrophages following oral exposure to sodium selenite but not to seleno-l-methionine. Archives of Environmental Contamination and Toxicology, 39: 243250.CrossRefGoogle Scholar
Juniper, D.T., Phipps, R.H., Ramos-Morales, E., and Bertin, G. (2009) Effects of dietary supplementation with selenium enriched yeast or sodium selenite on selenium tissue distribution and meat quality in lambs. Animal Feed Science and Technology, 149: 228239.CrossRefGoogle Scholar
Kaur, R., and Kaur, K. (2000) Effects of dietary selenium (Se) on morphology of testis and cauda epididymis in rats. Indian Journal of Physiology and Pharmacology, 44: 265272.Google ScholarPubMed
Kelly, M.P. and Power, R.F. (1995) Fractionation and identification of the major selenium compounds in selenized yeast. Journal of Dairy Science, 78(Suppl. 1):237. (abstract)Google Scholar
Kieliszek, M., and Błażejak, S. (2013) Selenium: Significance and outlook for supplementation. Nutrition, 29: 713718.CrossRefGoogle ScholarPubMed
Klaassen, C.D., Bracken, W.M., Dudley, R.E., Goering, P.L., Hazelton, G.A., and Hjelle, J.J. (1985) Role of sulfhydryls in the hepatotoxicity of organic and metallic compounds. Fundamental and Applied Toxicology, 5: 806815.CrossRefGoogle ScholarPubMed
Kolb, E. (1984) Metabolism of ascorbic acid in livestock under pathological conditions. in: Wegger, I., Tagwerker, F.J., and Moustgaard, J. (Eds.), Proceedings of Workshop on Ascorbic Acid in Domestic Animals. The Royal Danish Agriculture Society, Copenhagen, Denmark. pp. 162175 Google Scholar
Kryukov, G.V., Castellano, S., Novoselov, S.V., Lohanov, A.V., Zehtab, O., Gulgó, R., and Gladyshev, V.N. (2003) Characterisation of mammalian selenoproteins. Science, 300: 14391443.CrossRefGoogle Scholar
Latshaw, J.D. (1975) Natural and selenite selenium in hen and egg. Journal of Nutrition, 105: 3237.CrossRefGoogle Scholar
Latshaw, J.D., and Osman, M. (1975) Distribution of selenium in eg white and yolk after feeding natural and synthetic selenium compounds. Poultry Science, 54: 12441252.CrossRefGoogle Scholar
Leeson, S., and Summers, J.D. (1997) Ingredient evaluation and diet formulation. in: Leeson, S., and Summers, J.D., Commercial Poultry Nutrition, 2nd ed., pp. 10111. (Guelph, Ontario, Canada, University Books).Google Scholar
Levander, O.A., and Beck, M.A. (1997) Interacting nutritional and infectious etiologies of Keshan disease. Insights from coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E. Biological Trace Element Research, 56: 521.CrossRefGoogle ScholarPubMed
Liang, H., van Remmen, H., Frolich, V., Lechleiter, J., Richardson, A., and Ran, Q. (2007) Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochemical and Biophysical Research Communications, 356: 893898.CrossRefGoogle ScholarPubMed
Low, S.C. and Berry, M.J. (1996) Knowing when not to stop: Selenocysteine incorporation into eukaryotes. Trends in Biochemical Sciences, 21: 203208.CrossRefGoogle Scholar
Lowry, K.R., and Baker, D.H. (1989) Amelioration of selenium toxicity by arsenicals and cysteine. Journal of Animal Science, 67: 959965.CrossRefGoogle ScholarPubMed
Lu, S.C. (2009) Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30: 4259.CrossRefGoogle ScholarPubMed
Lu, S.C. (2013) Glutathione synthesis. Biochimica et Biophysica Acta, 1830: 31433153.CrossRefGoogle ScholarPubMed
Mahan, D.C. (1995) Selenium metabolism in animals: What role does selenium yeast have? in: Lyons, T.P., and Jacques, K.A. (Eds.) Biotechnology in the Feed Industry, pp. 257267 (Nottingham, United Kingdom, Nottingham University Press).Google Scholar
Mahan, D.C., and Parrett, N.A. (1996) Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. Journal of Animal Science, 74: 29672974.CrossRefGoogle ScholarPubMed
Mahmoud, K.Z., and Edens, F.W. (2003) Influence of selenium sources on age-related and mild heat stress-related changes of blood and liver glutathione redox cycle in broiler chickens (Gallus domesticus). Comparative Biochemistry and Physiology Part B Biochemisty and Molecular Biology, 136: 921934.CrossRefGoogle ScholarPubMed
Mahmoud, K.Z., and Edens, F.W. (2005) Influence of organic selenium on hsp70 response of heat-stressed and enteropathogenic Escherichia coli-challenged broiler chickens (Gallus gallus). Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 141: 6975.CrossRefGoogle ScholarPubMed
Mahmoud, K.Z., Edens, F.W., Eisen, E.J., and Havenstein, G.B. (2004) Ascorbic acid decreases heat shock protein 70 and plasma corticosterone in broilers (Gallus gallus domesticus) subjected to cyclic heat stress. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology, 137: 3542.CrossRefGoogle ScholarPubMed
Maiorino, M., Coassin, M., Roveri, A., and Ursini, F. (1989) Microsomal lipid peroxidation: effect of vitamin E and its functional interaction with phospholipid hydroperoxide glutathione peroxidase. Lipids, 24: 721726.CrossRefGoogle ScholarPubMed
Maiorino, M., Thomas, J.P., Girotti, A.W., and Ursini, F. (1991) Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radical Research Communications, 12–13(pt.1): 131135.CrossRefGoogle Scholar
Markham, G.D., Hafner, E.W., Tabor, C.W., and Tabor, H. (1980) S-adenosylmethionine synthetase from Escherichia coli . Journal of Biological Chemistry, 255: 90829092.CrossRefGoogle ScholarPubMed
McConnell, K.P., and Portman, O.W. (1952) Excretion of dimethyl selenide by the rat. Journal of Biological Chemistry, 195: 277282.CrossRefGoogle ScholarPubMed
McDowell, L.R. (2000) Vitamins in Animal and Human Nutrition. 2nd ed. Iowa State University Press, Ames, Iowa.CrossRefGoogle Scholar
Moksnes, K. and Norheim, G. (1986) A comparison of selenomethionine and sodium selenite as a supplement in chicken feeds. Acta Veterinaria Scandinavica, 27: 103114.CrossRefGoogle ScholarPubMed
Moxon, A.L., Olson, O.E., and Searight, W.V. (1950) Selenium in rocks, soils, and plants. South Dakota Agricultural Experiment Station Technical Bulletin Number 2.Google Scholar
Nomura, K., Imai, H., Koumura, T., Kobayashi, T., and Nakagawa, Y. (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemic-induced apoptosis. Biochemistry Journal, 351: 183193.CrossRefGoogle Scholar
Norheim, G., and Moksnes, K. (1985) Distribution and elimination of selenium and glutathione peroxidase (GSH-Px) in chickens after supplementation with sodium selenite or selenomethionine. in:. Mills, C.F., Bremner, I., and Chesters, J.K. (Eds.), Trace Elements in Man and Animals- TEMA 5, pp. 493495 (Farnham Royal, United Kingdom, Commonwealth Agricultural Bureaux).Google Scholar
Ookhtens, M., and Kaplowitz, N. (1998) Role of the liver in interorgan homeostasis of glutathione and cys[e]ine. Seminars in Liver Disease, 18: 313329.CrossRefGoogle Scholar
Olson, O.E., and Palmer, I.S. (1976) Selenoamino acids in tissues of rats administered inorganic selenium. Metabolism, 25: 299306.CrossRefGoogle ScholarPubMed
Ort, J.F., and Latshaw, J.D. (1978) The toxic level of sodium selenite in the diet of laying chickens. Journal of Nutrition, 108: 11141120.CrossRefGoogle ScholarPubMed
Painter, E.P., and Franke, K.W. (1940) On the relationship of selenium to sulfur and nitrogen deposition in cereals. American Journal of Botany, 27: 336339.CrossRefGoogle Scholar
Palmer, I.S., Fisher, D.D., Halverson, A.W., and Olson, O.E. (1969) Identification of a major selenium excretory product in rat urine. Biochimica et Biophysica Acta, 177: 336342.CrossRefGoogle Scholar
Palmer, I.S., Gunsalus, R.P., Halverson, A.W., and Olson, O.E. (1970) Trimethylselenonium ion as a general excretory product from selenium metabolism in the rat. Biochimica et Biophysica Acta, 208: 260266.CrossRefGoogle ScholarPubMed
Pan, F., Natori, Y., and Tarver, H. (1964) Studies on selenium compounds. II. Metabolism of selenomethionine and selenoethionine in rats. Biochimica et Biophysica Acta, 93: 521525.CrossRefGoogle ScholarPubMed
Pappas, A.C., Zoidis, E., Surai, P.F., and Zervas, G. (2008) Selenoproteins and maternal nutrition. Comparative Biochemistry and Physiology Part B Biochemisty and Molecular Biology, 151: 361372.CrossRefGoogle ScholarPubMed
Payne, R.L., and Southern, L.L. (2005a) Comparison of inorganic and organic selenium sources for broilers. Poultry Science, 84: 898902.CrossRefGoogle ScholarPubMed
Payne, R.L., and Southern, L.L. (2005b) Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poultry Science, 84: 12681276.CrossRefGoogle ScholarPubMed
Pompella, A., Visvikis, A., Paolicchi, A., De Tata, V., and Casini, A.F. (2003) The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 66: 1499–503.CrossRefGoogle ScholarPubMed
Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. Journal of Biological Chemistry, 266: 42444250.CrossRefGoogle ScholarPubMed
Rai, D., Felmy, A.R., and Moore, D.A. (1995) The solubility product of crystalline ferric selenite hexahydrate and the complexation constant of FeSeO3 + . Journal of Solution Chemistry, 24: 735752.CrossRefGoogle Scholar
Raiz, M., and Mehmood, K.T. (2012) Selenium in human health and disease: A review. Journal of the Postgraduate Medical Institute, 26: 120133.Google Scholar
Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., and Hoekstra, W.G. (1973) Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179: 588590.CrossRefGoogle ScholarPubMed
Roussyn, I., Briviba, K., Masumoto, H., and Sies, H. (1996) Selenium-containing compounds protect DNA from single-strand breaks caused by peroxynitrite. Archives of Biochemistry and Biophysics, 330: 216218.CrossRefGoogle ScholarPubMed
Roy, G., Sarma, B.K., Phadnis, P.P., and Mugesh, G. (2005) Selenium-containing enzymes in mammals: chemical perspectives. Journal of Chemical Sciences, 117: 287303.CrossRefGoogle Scholar
Scholz, R.W., Graham, K.S., Gumpricht, E., and Reddy, C.C. E. (1989) Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Annals of the New York Academy of Sciences, 570: 514517.CrossRefGoogle Scholar
Schrauzer, G.N. (1998) Selenomethionine and selenium yeast: appropriate forms of selenium for use in infant formulas and nutritional supplements. Journal of Medicinal Foods, 1: 201206.CrossRefGoogle Scholar
Schrauzer, G.N. (2000) Selenomethionine: A Review of its nutritional significance, metabolism, and toxicity. Journal of Nutrition, 130: 16531656.CrossRefGoogle ScholarPubMed
Schwarz, K., and Foltz, C.M. (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 79: 32923293.CrossRefGoogle Scholar
Schwarz, K., and Foltz, C.M. (1958) Factor 3 activity of selenium compounds. Journal of Biological Chemistry, 233: 245251.CrossRefGoogle ScholarPubMed
Scott, M.L. (1973) The selenium dilemma. Journal of Nutrition, 103: 803810.CrossRefGoogle ScholarPubMed
Scott, M.L., Nesheim, M.C., and Young, R.J. (1982) Nutrition of the Chicken. 3rd Ed. M. L. Scott & Associates, Ithaca, NY.Google Scholar
Shamberger, R.J. (1985) The genotoxicity of selenium. Mutation Research, 154: 2948.CrossRefGoogle ScholarPubMed
Sheehy, P.J. A., Morrissey, P.A., and Flynn, J. (1993a) Increased storage stability of chicken muscle by dietary α-tocopherol supplementation. Irish Journal of Agriculture and Food Research, 32: 6773.Google Scholar
Sheehy, P.J. A., Morrissey, P.A., and Flynn, J. (1993b) Influence of heated vegetable oils and α-tocopheryl acetate supplementation on α-tocopherol, fatty acids, and lipid peroxidation in chicken muscle. British Poultry Science, 34: 367381.CrossRefGoogle ScholarPubMed
Sies, H. (1999) Glutathione and its role in cellular functions. Free Radicals in Biology and Medicine, 27: 916921.CrossRefGoogle ScholarPubMed
Sies, H., and Arteel, G.E. (2000) Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radicals in Biology and Medicine, 28: 14511455.CrossRefGoogle ScholarPubMed
Sies, H., Klotz, L.O., Sharov, V.S., Assmann, A., and Briviba, K. (1998) Protection against peroxynitrite by selenoproteins. Zeitschrift für Naturforschung. Section C, Biosciences, 53: 228232.CrossRefGoogle ScholarPubMed
Sies, H., Sharov, V.S., Klotz, L.O., and Briviba, K. (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. Journal of Biological Chemistry, 272: 2781227817.CrossRefGoogle ScholarPubMed
Song, Y.-X., Hou, J.-X., Zhang, L., Wang, J.-G., Liu, X.-R., Zhou, Z.-G., and Cao, B.-Y. (2015) Effect of dietary selenomethionine supplementation on growth performance, tissue se concentration, and blood glutathione peroxidase activity in kid Boer goats. Biological Trace Element Research, 167: 242–50.CrossRefGoogle ScholarPubMed
Spallholz, J.E. (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radicals in Biology and Medicine, 17: 4564.CrossRefGoogle ScholarPubMed
Spallholz, J.E. (1997) Free radical generation by selenium compounds and their pro-oxidant toxicity. Biomedical and Environmental Sciences, 10: 260270.Google Scholar
Spallholz, J.E., and Hoffman, D.J. (2002) Selenium toxicity: Cause and effects in aquatic birds. Aquatic Toxicology, 57: 2737.CrossRefGoogle ScholarPubMed
Stohs, S.J., and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radicals in Biology and Medicine, 18: 321336.CrossRefGoogle ScholarPubMed
Stewart, M.S., Spallholz, J.E., Neldner, K.H., and Pence, B.C. (1999) Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radicals in Biology and Medicine, 26: 4248.CrossRefGoogle ScholarPubMed
Stewart, W.C., Bobe, G., Vorachek, W.R., Pirelli, G.J., Mosher, W.D., Nichols, T., Van Saun, R.J., Forsberg, N.E., and Hall, J.A. (2012) Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. Journal of Animal Science, 90: 577584.CrossRefGoogle ScholarPubMed
Sunde, R.A. (1990) Molecular biology of selenoproteins. Annual Review of Nutrition, 10: 451474.CrossRefGoogle ScholarPubMed
Sunde, R.A., and Hadley, K.B. (2010) Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Experimental Biology and Medicine, 235: 2331.CrossRefGoogle ScholarPubMed
Suomi, K., and Alaviuhkola, T. (1992) Response to organic and inorganic selenium in the performance and blood selenium content of growing pigs. Agricultural Science in Finland, 1: 211215.Google Scholar
Surai, P.F. (2002) Selenium. in: Natural Antioxidants in Avian Nutrition and Reproduction, pp. 233304 (Nottingham, UK, Nottingham University Press).Google Scholar
Terada, A., Yoshida, M., Seko, Y., Kobayashi, T., Yoshida, K., Nakada, M., Nakada, K., Echizen, H., Ogata, H. and Rikihisa, T. (1999) Active oxygen species generation and cellular damage by additives of parenteral preparations: Selenium and sulfhydryl compounds. Nutrition, 15: 651655.CrossRefGoogle ScholarPubMed
United States Food and Drug Administration (1974) Code of Federal Regulations, Title 21. Food additives permitted in feed and drinking water of animals. Section 573.920 Selenium. January 9, 1974.Google Scholar
Upton, J.R., Edens, F.W., and Ferket, P.R. (2009) The effects of dietary oxidised fat and selenium source on performance, glutathione peroxidase, and glutathione reductase activity in broiler chickens. Journal of Applied Poultry Research, 18: 193202.CrossRefGoogle Scholar
Ursini, F., and Bindoli, A. (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chemistry and Physics of Lipids, 44: 255276.CrossRefGoogle ScholarPubMed
Ursini, F., Maiorino, M., and Gregolin, C. (1985) The selenoenzyme phospholipid glutathione peroxidase. Biochimica et Biophysica Acta, 839: 6270.CrossRefGoogle Scholar
Ursini, F., Maiorino, M., and Gregolin, C., 1986. Phospholipid glutathione peroxidase. International Journal of Tissue Reactions, 8: 99103.Google Scholar
Ursini, F., Maiorino, M., Valente, M., Ferri, L., and Gregolin, C. (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphtidylcholine hyroperoxides. Biochimica et Biophysica Acta, 710: 197211.CrossRefGoogle Scholar
Wang, Y.X., Zhan, X.A., Zhang, X.W., Wu, R.J., and Yuan, D. (2011a) Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biological Trace Element Research, 143: 261273.CrossRefGoogle ScholarPubMed
Wang, Y.X., Zhan, X.A., Yuan, D., Zhang, X.W., and Wu, R.J. (2011b) Effects of selenomethionine and sodium selenite supplementation on meat quality, selenium distribution and antioxidant status in broilers. Czech Journal of Animal Science, 56: 305313.CrossRefGoogle Scholar
Walter, R., and Roy, J. (1971) Selenomethionine, a potential catalytic antioxidant in biological systems. Journal of Organic Chemistry, 36: 25612563.CrossRefGoogle ScholarPubMed
Whanger, P.D. (2002) Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 21: 223232.CrossRefGoogle ScholarPubMed
Wu, X., Wei, C., Pan, C., Duan, Y., and Huang, K. (2010) Regulation of expression and activity of selenoenzymes by different forms and concentrations of selenium in primary cultured chicken hepatocytes. British Journal of Nutrition, 104: 16051612.CrossRefGoogle ScholarPubMed
Yan, L., and Spallholz, J.E. (1993) Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells. Biochemical Pharmacology, 45: 429437.Google ScholarPubMed
Zhang, L., Wang, Y.X., Zhou, Y., Zheng, L., Zhan, X.A., and Pu, Q.H. (2014) Different sources of maternal selenium affect selenium retention, antioxidant status, and meat quality of 56-day-old offspring of broiler breeders. Poultry Science, 93: 22102219.CrossRefGoogle ScholarPubMed
Zoidis, E., Pappas, A.C., Georgiou, C.A., Komatis, E., and Feggeros, K. (2010) Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comparative Biochemistry and Physiology Part B Biochemisty and Molecular Biology, 155: 294300.CrossRefGoogle ScholarPubMed