Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:28:35.066Z Has data issue: false hasContentIssue false

A study of the value of repeated backcrossing of a pentaploid hybrid of Triticum vulgare (cult. var. Little Joss) and T. Turgidum (cult. var. Rivett)

Published online by Cambridge University Press:  27 March 2009

F. L. Engledow
Affiliation:
School of Agriculture, University of Cambridge
G. D. H. Bell
Affiliation:
Plant Breeding Institute, Trumpington, Cambridge
F. G. H. Lupton
Affiliation:
Plant Breeding Institute, Trumpington, Cambridge

Extract

1. Selections from a cross of varieties of Triticum vulgare and T. Turgidum have been backcrossed repeatedly to the turgidum and vulgare parents and selections of turgidum and vulgare type respectively made within each series.

2. The yield and morphological stability of turgidum- and vulgare-type selections from the straight cross have been compared with those of selections backcrossed up to four times to T. turgidum and T. vulgare respectively.

3. In the case of backcrosses to T. Turgidum the highest yielding selections have been derived from the most frequently backcrossed material, but the vulgare-type selections from the straight cross have outyielded those from the material backcrossed to T. vulgare.

4. An analysis of the yield components of the parents and of the most promising selections, in terms of ears per plant, spikelets per ear, grains per spikelet and 1000-grain weight, has shown no evidence of a combination of the characters determining the high yield of the parents in these high yielding selections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, R. W. (1949). J. Agric. Res. 78, 3364Google Scholar
Bell, G. D. H. (1936). J. Agric. Sci. 26, 155–71Google Scholar
Briggs, F. N. (1938). Amer. Nat. 72, 285–92Google Scholar
Briggs, F. N. & Allard, R. W. (1953). Agron. J. 45, 131–8CrossRefGoogle Scholar
Engledow, F. L. (1926). J. Agric. Sci. 16, 166–95Google Scholar
Engledow, F. L. & Ramiah, K. (1930). J. Agric. Sci. 20, 263344CrossRefGoogle Scholar
Granhall, I. (1943). Hereditas, Lund, 29, 269372CrossRefGoogle Scholar
Harland, S. C. & Atteck, O. M. (1941). J. Genet. 42, 2147Google Scholar
Hayes, H. K., Parker, J. H. & Kurtzweil, C. (1920). J. Agric. Res. 19, 523–42Google Scholar
Holmes, F. O. (1938). Phytopathology, 28, 553.Google Scholar
Hunter, H. (1939). J. Inst. Brew. 45, 286–98CrossRefGoogle Scholar
McFadden, E. S. (1930). J. Amer. Soc. Agron. 22, 1020–34CrossRefGoogle Scholar
Matsumura, S. (1937). Jap. J. Genet. 13, 227–8Google Scholar
Thompson, W. P. & Cameron, D. R. (1928). Genetics, 13, 456–69Google Scholar
Wakakuwa, S. (1934). Jap. J. Bot. 7, 151–85Google Scholar
Watkins, A. E. (1927). J. Genet. 18, 376–96CrossRefGoogle Scholar
Watkins, A. E. (1928). J. Genet. 19, 8196CrossRefGoogle Scholar
Watkins, A. E. (1930). J. Genet. 23, 173263Google Scholar
Wiklund, K. (1954). K. Lantbr. Högskolans Ann. 21, 457–85Google Scholar