Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T06:57:03.719Z Has data issue: false hasContentIssue false

The proximate analysis of the organic constituents in north-east scottish soils, with some notes on the methods

Published online by Cambridge University Press:  27 March 2009

James M. Shewan
Affiliation:
The Macaulay Institute for Soil Research, Aberdeen

Extract

1. The proximate analysis has been made of several profiles from the north-east of Scotland, these including Scots pine, beech, birch and Calluna heath.

2. The system of proximate analysis proposed by Waksman has been used as a basis for the investigation, but various modifications have been introduced, e.g. sugar and cellulose determinations, with a view to obtaining greater accuracy.

3. Although a restricted number of profiles has been investigated, the results indicate that these may be divided into two groups, viz. raw humus and mull types, according to the manner in which the various fractions have been decomposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amick, C. (1927). J. phys. Chem. 31, 1441.CrossRefGoogle Scholar
Bamford, K. & Campbell, W. (1936). Biochem. J. 30, 419.CrossRefGoogle Scholar
Bertrand, G. (1906). Bull. Soc. chim. Paris, 35, 1285.Google Scholar
Bornebusch, C. (1933). Humus Nomenclature. Int. For. Congr., Nancy. Circularized English Translation.Google Scholar
Dickson, A., Otterson, H. & Link, K. (1930). J. Amer. chem. Soc. 52, 775.CrossRefGoogle Scholar
Falck, R. (1926). Ber. dtsch. bot. Ges. 44, 652.Google Scholar
Grosskopf, W. (1926). BrennstChemie, 7, 239.Google Scholar
Hesselman, H. (1926). Medd. Skogsförsöksanst., Stockh., 22, No. 5.Google Scholar
Johnsen, B. & Hovey, R. (1918). J. Soc. chem. Ind., Lond., 37, 132 T.Google Scholar
Kiesel, A. & Semiganovsky, H. (1927). Ber. dtsch. chem. Ges. B, 60, 333.Google Scholar
Lane, J. & Eynon, L. (1923). J. Soc. chem. Ind., Lond., 42, 32 T.Google Scholar
Leighty, W. & Shorey, E. (1930). Soil Sci. 30, 257.CrossRefGoogle Scholar
Polynov, B., Chokalskaya, Z. J. and Beltz, V. (1929). Instructions for the Collection of Soil Monoliths. See Muir, A. (1934). Forestry, 8, 25.Google Scholar
Ritter, G., Mitchell, R. & Seborg, R. (1933). J. Amer. chem. Soc. 55, 2989.CrossRefGoogle Scholar
Robertson, I. M. & Shewan, J. M. (1935). J. Soc. chem. Ind., Lond., 54, 35 T.Google Scholar
Robinson, G. (1932). Soils, their Origin, Constitution and Classification. London.Google Scholar
Russell, E. J. (1932). Soil Conditions and Plant Growth. London.Google Scholar
Sieber, & Walter, (1913). Papierfabrikant, 11, 1179. Quoted from Johnsen, B. & Hovey, R. (1918) above.Google Scholar
Smolik, L. (1933). Věstn. čes. Akad. 9, 5.Google Scholar
Thaysen, A., Bakes, W. & Bunker, H. (1926). Biochem. J. 20, 210.CrossRefGoogle Scholar
Tiurin, I. & Kononova, M. (1934). Chem. Soc. Agric. 3 (2), 15.Google Scholar
Tollens, & Krober, . Quoted from Pervier & Gortner (1923). J. industr. Engng Chem. 15, 1167. See also Powell & Whittaker (1924). J. Soc. chem. Ind., Lond., 43, 35 T.Google Scholar
Waksman, S. (1931). Principles of Soil Microbiology. London.Google Scholar
Waksman, S. & Allen, M. (1934). J. Amer. chem. Soc. 61, 2701.CrossRefGoogle Scholar
Waksman, S. & Reuszer, H. (1932). Soil Sci. 33, 135.CrossRefGoogle Scholar
Waksman, S. & Stevens, K. (1930 a). J. industr. Engng Chem. (Anal.), 2, 167.CrossRefGoogle Scholar
Waksman, S. & Stevens, K. (1930 b). Soil Sci. 30, 97.CrossRefGoogle Scholar
Weis, F. (1929). K. danske Vidensk. Selsk. Biol. Medd. 7, No. 9.Google Scholar