Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T05:30:59.689Z Has data issue: false hasContentIssue false

Prediction of grape production by grapevine cultivar Godello in north-west Spain

Published online by Cambridge University Press:  10 March 2011

M. FERNÁNDEZ-GONZÁLEZ*
Affiliation:
Department of Plant Biology and Soil Sciences, Sciences Faculty of Ourense, University of Vigo, Ourense E-32004, Spain
O. ESCUREDO
Affiliation:
Department of Plant Biology and Soil Sciences, Sciences Faculty of Ourense, University of Vigo, Ourense E-32004, Spain
F. J. RODRÍGUEZ-RAJO
Affiliation:
Department of Plant Biology and Soil Sciences, Sciences Faculty of Ourense, University of Vigo, Ourense E-32004, Spain
M. J. AIRA
Affiliation:
Department of Botany, Pharmacy Faculty, University of Santiago of Compostela, Santiago of Compostela E-15782, Spain
V. JATO
Affiliation:
Department of Plant Biology and Soil Sciences, Sciences Faculty of Ourense, University of Vigo, Ourense E-32004, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Advance knowledge of potential grape production is of great value for harvest and post-harvest planning, in that it enables the winery to estimate requirements in terms of crop insurance and grape-picking workforce, and to optimize post-harvest processes.

An aerobiological and phenological study of the Godello grape variety was carried out at a vineyard belonging to the Ribeiro Designation of Origin (Ourense, Spain) from 2004 to 2009. Aerobiological data were obtained using a Lanzoni VPPS-2000 volumetric trap placed inside the vineyard, while phenological observations were conducted on 20 selected vines, using the Biologische Bundesanstalt, Bundessortenamt and chemical industry(BBCH) standardized scale. Pollen production per anther and per grapevine was studied during the flowering stage, and airborne Vitis pollen counts were recorded. This information was used to develop a model for predicting local grape production. The equation obtained accounted for 0·99 of harvest variability, thus enabling accurate prediction of grape production 1-month in advance.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aira, M. J., Jato, V. & Iglesias, I. (2005). Calidad del aire. Polen y esporas en la comunidad gallega. Galicia, Spain: Xunta de Galicia.Google Scholar
Albelda, Y., Rodríguez-Rajo, F. J., Jato, V. & Aira, M. J. (2005). Concentraciones atmosféricas de propágulos fúngicos en viñedos del Ribeiro (Galicia, España). Boletín Micológico 20, 18.CrossRefGoogle Scholar
Amerine, M. A. & Winkler, A. J. (1944). Composition and quality of musts and wines of California grapes. Hilgardia 15, 493675.CrossRefGoogle Scholar
Besselat, B. & Cour, P. (1990). La prévision de la production viticole à l'aide de la technique de dosage pollinique de l'atmosphère. Bulletin de l'O.I.V. 63, 721740.Google Scholar
Besselat, B. & Cour, P. (1996). Early crop prediction. Summary and prospects for the use of a new tool based on pollen analysis of the atmosphere. In Proceedings of the Workshop for Central and Eastern Europe on Agrometeorological Models. Theory and Applications in the MARS Project, Ispra, 21–25 November 1994 (Eds Dallemand, J. F. & Vossen, P.), pp. 7382. Luxembourg: Official Publications of the European Communities.Google Scholar
Besselat, B., Cour, P. & Montanarella, L. (1997). Méthode integrée de prevision de récolte básée sur le dosage pollinique de l'atmosphére: d'une prévision locale à une prevision nationale. In Proceedings, 22nd World Congress of the Office International de la Vigne et du Vin, Buenos Aires, Argentina (Ed. Conrradi, C.), p. 8. Paris, France: OIV.Google Scholar
Blanco-Ward, D., García Queijeiro, J. M. & Jones, G. V. (2007). Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 46, 6370.Google Scholar
Broome, J. C., English, J. T., Marois, J. J., Latorre, B. A. & Avilés, J. C. (1995). Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology 85, 97102.CrossRefGoogle Scholar
Bulit, J. & Dubos, B. (1988). Botrytis bunch rot and blight. In Compendium of Grape Diseases (Eds Pearson, R. C. & Goheen, A. C.), pp. 1315. St. Paul, MN: The American Phytopathological Society.Google Scholar
Campbell, P., Bendek, C. & Latorre, B. A. (2007). Risk of powdery mildew (Erysiphe necator) outbreaks on grapevines in relation to cluster development. Ciencia e Investigación Agraria 34, 511.CrossRefGoogle Scholar
Candau, P., González Minero, F. J. & González Romano, M. L. (1991). Polen y productividad. Agricultura: Revista Agropecuaria 708, 639641.Google Scholar
Candau, P., González Minero, F. J. & Tomás, C. (1998). Forecasting olive (Olea europaea) crop production by monitoring airborne pollen. Aerobiologia 14, 241256.Google Scholar
Cortesi, P., Bisiach, M., Ricciolini, M. & Gadoury, D. M. (1997). Cleistothecia of Uncinula necator. An additional source if inoculum in Italian vineyards. Plant Disease 81, 922926.CrossRefGoogle ScholarPubMed
Cruden, R. W. (1977). Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31, 3246.CrossRefGoogle ScholarPubMed
Cunha, M. (2002). Previsão de colheitas em viticultura. Integração de modelos aeropolinicos e bioclimáticos. PhD thesis, Faculdade de Ciências da Universidade do Porto, Portugal.Google Scholar
Cunha, M., Abreu, I., Pinto, P. & De Castro, R. (2003). Airborne pollen samples for early-season estimates of wine production in a Mediterramean climate area of northen Portugal. American Journal of Enolological and Viticulture 54, 189194.CrossRefGoogle Scholar
Díaz, M. R. (1999). Aplicación de la Aerobiología en la agricultura. Control de enfermedades fúngicas y producción de Vitis vinifera. PhD thesis, Universidad de Vigo.Google Scholar
Díaz, M. R., Iglésias, I. & Jato, V. (1997). Airborne concentrations of Botrytis, Uncinula and Plasmopara spores in a vineyard in Leiro-Ourense (N.W. Spain). Aerobiologia 13, 3135.CrossRefGoogle Scholar
Díaz, M. R., Iglésias, I. & Jato, V. (1998). Seasonal variation of airborne fungal spore concentrations in a vineyard of North-West Spain. Aerobiologia 14, 221227.CrossRefGoogle Scholar
Dokoozlian, N. K. (2000). Grape Berry Growth and Development. In Raisin Production Manual (Ed. Christensen, L. P.), pp. 3037. Agricultural and Natural Resources Publication 3393. Oakland, CA: University of California.Google Scholar
Esterio, M., Auger, J., Droguett, A. & Arroyo, A. (1996). Effectiveness of biological integrated and traditional control programs of Botrytis cinerea in table grape in the Central Valley of Chile. In Proccedings of the XI International Botrytis Symposium, Wageningen. p. 73. Wageningen, The Netherlands: Wageningen University.Google Scholar
Fornaciari, M. & Romano, B. (1995). Contributo alla previsione di raccolta per vite ed olivo in tre siti di campionamento. Annali della Facolta’ di Agraria Universita degli – Perugia 49, 137154.Google Scholar
Gadoury, D. M. & Pearson, R. C. (1990). Germination of ascospores and infection of Vitis by Uncinula necator. Phytopathology 80, 11981203.CrossRefGoogle Scholar
Galán, C., Vázquez, L., García-Mozo, H. & Domínguez, E. (2004). Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crop Research 86, 4351.CrossRefGoogle Scholar
Galán, C., Cariñanos, P., Alcázar, P. & Domínguez, E. (2007). Spanish Aerobiology Network (REA): Management and Quality Manual. Córdoba, Spain: Servicio De Publicaciones De La Universidad De Córdoba.Google Scholar
Gil, G. (1999). Fruticultura: El Potencial Productivo. Crecimiento Vegetativo y Diseño de Huertos y Viñedos. Santiago de Chile: Universidad Católica de Chile.Google Scholar
Hidalgo, L. (2002). Tratado de Viticultura General. 3rd edn. Madrid, Spain: Mundi-Prensa.Google Scholar
Hidalgo, P. J., Galán, C. & Domínguez, E. (1999). Pollen production of the genus Cupressus. Grana 38, 296300.CrossRefGoogle Scholar
Holz, G., Coertze, S. & Basson, E. J. (1997). Latent infection of Botrytis cinerea in grape pedicels leads to post harvest decay (abstract). Phytopathology 87, S43.Google Scholar
Huglin, P. (1983). Possibiliés d'appréciation objective du milieu viticole. Bulletin de l'O.I.V. 56, 823833.Google Scholar
Kamel, A. (1959). Estudio sobre la sexualidad de las uvas de mesa en España. Madrid, Spain: Instituto Nacional de Investigaciones Agronómicas.Google Scholar
Kelen, M. & Demirtas, I. (2003). Pollen viability, germination capability and pollen production level of some grape varieties (Vitis vinifera L.). Acta Physiologiae Plantarum 25, 229233.CrossRefGoogle Scholar
Kelen, M., Sutyemez, M., Beyhan, O. & Yalinkiliç, A. (1996). A study on fertilization biology of some grape varieties. Acta Horticulturae 441, 433438.Google Scholar
Kimura, P. H., Okamoto, G. & Hirano, K. (1998). The mode of pollination and stigma receptivity in Vitis coignetiae Pulliat. American Journal of Enology and Viticulture 49, 15.CrossRefGoogle Scholar
Lalancette, N., Madden, L. V. & Ellis, M. A. (1988). A quantitative model for describing the sporulation of Plasmopara viticola on grape leaves. Phytopathology 78, 13161321.CrossRefGoogle Scholar
Latorre, B. A. (1986). Manejo de Botrytis cinerea en uva de mesa. Revista Fruticola (Chile) 7, 7588.Google Scholar
Latorre, B. A. & Vasquez, G. (1996). Situacion de Botrytis cinerea latente en uva de mesa de la zona Central. Aconex (Chile) 52, 1621.Google Scholar
Latorre, B. A., Rioja, M. E. & Lillo, C. (2002). Efecto de la temperatura en el desarrollo de la infección producida por Botrytis cinerea en flores y bayas de uva de mesa. Ciencia e Investigación Agraria 29, 145151.CrossRefGoogle Scholar
Laviola, C., Burruano, S. & Strazzeri, S. (1986). Influenza della temperatura sulla germinazione delle oospore di Plasmopara viticola (Berk. et Curt.) Berl. Et De Toni. Phytopathologia Mediterranea 25, 8084.Google Scholar
Lebon, G., Duchêne, E., Brun, O. & Clément, C. (2005). Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Annals of Botany 95, 943948.CrossRefGoogle ScholarPubMed
Lorenz, D. H., Eichorn, K. W., Bleiholder, H., Klose, R., Meier, U. & Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Viticultural and Enological Science 49, 6670.Google Scholar
Magarey, P. A., Gadoury, D. M., Emmett, R. W., Biggins, L. T., Clarke, K., Wachtel, M. F., Wicks, T. J. & Seem, R. C. (1997). Cleistothecia of Uncinula necator in Australia. Viticultural and Enological Science 52, 210218.Google Scholar
Mansilla, J. P., Pintos, C. & Abelleira, A. (1991). Problemática fitosanitaria del viñedo en Galicia. Revista Vitivinicultura 6, 4247.Google Scholar
McIntyre, G. N., Lider, L. A. & Ferrari, N. L. (1982). The chronological classification of grapevine phenology. American Journal of Enology and Viticulture 33, 8085.CrossRefGoogle Scholar
Meier, U. (2001). Growth Stages of Mono and Dicotyledonous Plants. 2nd edn. BBCH Monograph. Berlin: Federal Biological Research Centre for Agriculture and Forestry.Google Scholar
Naab, O. A., Caccavari, M. A. & Caramuti, V. E. (2003). Producción y biología del polen en algunas variedades de Vitis vinifera L. cultivadas en la Argentina. Revista del Museo Argentino de Ciencias Naturales 5, 145150.CrossRefGoogle Scholar
Nair, N. G., Guilbaud-Oulton, S., Barchia, I. & Emmett, R. (1995). Significance of carry over inoculum, flower infection and latency on the incidence of Botrytis cinerea in berries of grapevines at harvest in New South Wales. Australian Journal of Experimental Agriculture 35, 11771180.CrossRefGoogle Scholar
Nigond, J. (1971). Le rôle du climat en Viticultura. Burdeos: Connaissance de la Vigne et du Vin.Google Scholar
Ortega, E., Dicenta, F. & Egea, J. (2007). Rain effect on pollen-stigma adhesion and fertilization in almond. Scientia Horticulturae 112, 345348.CrossRefGoogle Scholar
Picco, A. M. (1992). Presence in the atmosphere of wine and tomato pathogens. Aerobiologia 8, 459463.CrossRefGoogle Scholar
Rodríguez-Rajo, F. J., Jato, V. & Aira, M. J. (2002). El polen de Poaceae en la atmósfera de Lugo y su relación con los parámetros meteorológicos (1999–2001). Acta Bototanica Malacitana 27, 4963.CrossRefGoogle Scholar
Vossen, P. & Rijks, D. (1995). Early Crop Yield Assessment of the EU Countries: The System Implemented by the Joint Research Centre. 3rd edn. Brussels: Official Publications of the European Communities.Google Scholar
Wolf, T. K., Baudoin, A. B. A. M. & Martínez-Ochoa, N. (1997). Effect of floral debris removal from fruit clusters on Botrytis bunch rot of Chardonnay grapes. Vitis 36, 2733.Google Scholar