Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T05:48:25.216Z Has data issue: false hasContentIssue false

Observations on the mineral metabolism of pullets. III

Published online by Cambridge University Press:  27 March 2009

R. H. Common
Affiliation:
Chemical and Animal Nutrition Division of the Ministry of Agriculture for Northern Ireland, and the Queen's University of Belfast

Extract

1. An experiment on pullets combining daily calcium and phosphorus balance determinations with carcass analyses is described.

2. It is shown that fat content of pullets is affected by the calcium content of the ration. The fat content was higher on a low calcium ration than on a high calcium ration.

3. The CaO content of pullets was raised considerably by feeding a high calcium ration before laying. This CaO must have been stored in the bones, which contained between 97·2 and 98·7% of all the CaO in the body.

4. The experiment suggests that pullets may use up to about one-quarter of their body calcium at the outset of laying for purposes of shell formation.

5. The composition of the inorganic material of the skeleton of pullets may be modified by alterations in their mineral metabolism due to egg production on diets with and without a calcium carbonate supplement. The nature of these modifications and their relationship to calcium metabolism during laying is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auchinachie, D. W. & Emslie, A. R. G. (1934). Biochem. J. 28, 1993.CrossRefGoogle Scholar
Buckner, G. D. & Martin, J. H. (1920). J. biol. Chem. 41, 195.CrossRefGoogle Scholar
Buckner, G. D., Martin, J. H. & Insko, W. M. (1932). Poult. Sci. 11, 58.CrossRefGoogle Scholar
Buckner, G. D., Martin, J. H. & Peter, A. M. (1924). Amer. J. Physiol. 71, 349.CrossRefGoogle Scholar
Burns, C. M. & Henderson, N. (1935). Biochem. J. 29, 2385.CrossRefGoogle Scholar
Chiewitz, O. & Hevesy, G. (1935). Nature, Lond., 136, 754.CrossRefGoogle Scholar
Common, R. H. (1932). J. agric. Sci. 22, 576.CrossRefGoogle Scholar
Common, R. H. (1933). J. agric. Sci. 23, 554.CrossRefGoogle Scholar
Common, R. H. (1936 a). J. agric. Sci. 26, 85.CrossRefGoogle Scholar
Common, R. H. (1936 b). J. agric. Sci. 26, 492.CrossRefGoogle Scholar
Conway, E. J. & Byrne, A. (1933). Biochem. J. 27, 419.Google Scholar
Cruickshank, E. M. (1934). Biochem. J. 28, 965.CrossRefGoogle Scholar
Deobald, H. J., Lease, E. J., Hart, E. B. & Halpin, J. G. (1936). Poult. Sci. 15, 179.CrossRefGoogle Scholar
Edwards, F. W., Parkes, E. B. & Nanji, H. R. (1935). Analyst, 60, 814.CrossRefGoogle Scholar
Fischler, F.Wild, A. & Kaussler, R. (1931). Biochem. Z. 239, 213.Google Scholar
Halnan, E. T. (1936). Bull. Minist. Agric., Lond., 7.Google Scholar
Halnan, E. T. (1937). 6th World's Poult. Congr. 1, 53.Google Scholar
Harshaw, H. M., Fritz, J. C. & Titus, H. W. (1934). J. agric. Res. 48, 997.Google Scholar
Klement, R. (1934). Hoppe-Seyl. Z. 229, 22.CrossRefGoogle Scholar
Laskowski, M. (1935). Biochem. Z. 260, 230.Google Scholar
Logan, M. A. & Taylor, H. L. (1937). J. biol. Chem. 119, 273.CrossRefGoogle Scholar
Marek, J., Wellman, O. & Urbányi, L. (1934). Hoppe-Seyl. Z. 226, 3.CrossRefGoogle Scholar
Marek, J., (1935). Hoppe-Seyl. Z. 234, 165.CrossRefGoogle Scholar
Morgulis, S. J. (1931). J. biol. Chem. 93, 455.CrossRefGoogle Scholar
Neal, W. M., Palmer, L. S., Eckles, C. R. & Gullickson, T. W. (1931). J. agric. Res. 42, 115.Google Scholar
Orent, E. R., Kruse, H. D. & MoCollum, E. V. (1934). J. biol. Chem. 106, 573.CrossRefGoogle Scholar
Robison, R. (1937). Ann. Rev. Biochem. 5, 181.CrossRefGoogle Scholar
Shear, M. J. & Kramer, B. (1928). J. biol. Chem. 79, 105.CrossRefGoogle Scholar
Shohl, A. T. (1933). Ann. Rev. Biochem. 2, 207.CrossRefGoogle Scholar