Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T23:45:03.554Z Has data issue: false hasContentIssue false

The inter-relationships of individual proteins and carbohydrates during fermentation in the rumen of the sheep. I. The fermentation of casein in the presence of starch or other carbohydrate materials

Published online by Cambridge University Press:  27 March 2009

D. Lewis
Affiliation:
A.R.C. Institute of Animal Physiology, Bahraham, Cambridge
I. W. McDonald
Affiliation:
A.R.C. Institute of Animal Physiology, Bahraham, Cambridge

Extract

1. The metabolic interactions of casein and starch or other carbohydrates are measured by estimating the concentrations of volatile fatty acids, ammonia, lactic acid and amino acids in the rumen after administering the protein and carbohydrate supplements alone or together.

2. The ammonia concentration is reduced (i.e. its utilization is probably increased), by the carbohydrate materials; levan and starch achieve this slightly more effectively than glucose or xylan and the effect of cellulose is very slight.

3. Under conditions when the normal ration fed is not of high quality a small supplement of casein stimulates the rate of fermentation of starch and other carbohydrates.

4. The findings indicate that the best utilization of protein supplements is probably obtained when a carbohydrate is also present that can be fermented at a comparable rate, conditions which stimulate microbial synthesis in the rumen.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. (1954). Biochem. J. 57, 400.CrossRefGoogle Scholar
Annison, E. F. (1956). Biochem. J. 64, 705.CrossRefGoogle Scholar
Arias, C., Burroughs, W., Gerlaugh, P. & Bethke, R. M. (1951). J. Anim. Sci. 10, 683.CrossRefGoogle Scholar
Arni, R. C. & Percival, E. G. V. (1951). J. Chem. Soc. p. 1822.Google Scholar
Belasco, I. J. (1956). J. Anim. Sci. 15, 496.CrossRefGoogle Scholar
Bentley, O. G., Lehmkuhl, A., Johnson, R. R., Hershberger, T. V. & Moxon, A. L. (1954). J. Amer. Chem. Soc. 76, 5000.CrossRefGoogle Scholar
Bryant, M. P. & Doetsch, R. N. (1954). Science, 120, 944.CrossRefGoogle Scholar
Burroughs, W., Gall, L. S., Gerlaugh, P. & Bethke, R. M. (1950). J. Anim. Sci. 9, 214.CrossRefGoogle Scholar
Challinor, S. W., Haworth, W. N. & Hirst, E. L. (1934). J. Chem. Soc. p. 1560.CrossRefGoogle Scholar
Chalmers, M. I. & Synge, R. L. M. (1954). Advanc. Protein Chem. 9, 93.CrossRefGoogle Scholar
Conway, E. J. (1950). Microdiffusion Analysis and Volumetric Error, 3rd edition. London: Crosby Lockwood.Google Scholar
Elsden, S. R. & Gibson, Q. H. (1954). Biochem. J. 58, 154.CrossRefGoogle Scholar
Fontenot, J. P., Gallup, W. D. & Nelson, A. B. (1955). J. Anim. Sci. 14, 807.CrossRefGoogle Scholar
Friedemann, T. E. & Graeser, J. B. (1933). J. Biol. Chem. 100, 291.CrossRefGoogle Scholar
Grouven, H. (1891). Cited by Munro (1951).Google Scholar
Hamilton, P. B. & van Slyke, D. D. (1943). J. Biol. Chem. 150, 231.CrossRefGoogle Scholar
Head, M. J. (1953). J. Agric. Sci. 43, 281.CrossRefGoogle Scholar
Heald, P. J. (1953). Brit. J. Nutr. 7, 124.CrossRefGoogle Scholar
James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
Kuhn, G. A. (1894). Landw. Versuchsw. 44, 257.Google Scholar
Lewis, D. (1957). J. Agric. Sci. 48, 438.CrossRefGoogle Scholar
McAnally, R. A. (1944). J. Exp. Biol. 20, 130.CrossRefGoogle Scholar
McDonald, I. W. (1948). Studies in the Metabolism of the Sheep with Special Reference to the Digestion of Protein. Dissertation, University of Cambridge.Google Scholar
McDonald, I. W. (1952). Biochem. J. 51, 86.CrossRefGoogle Scholar
Markham, R. (1942). Biochem. J. 36, 790.CrossRefGoogle Scholar
Mills, R. C., Lardinois, C. C., Rupel, I. W. & Hart, E. B. (1944). J. Dairy Sci. 27, 571.CrossRefGoogle Scholar
Munro, H. N. (1951). Physiol. Rev. 31, 449.CrossRefGoogle Scholar
Palmer, A. (1951). Biochem. J. 48, 389.CrossRefGoogle Scholar
Shazly, K. el- (1952). Biochem. J. 51, 640.CrossRefGoogle Scholar
Waite, R. & Boyd, J. (1953). J. Sci. Fd Agric. 4, 197, 257.CrossRefGoogle Scholar
Wicke, A. & Weiske, J. (1896). Z. phys. Chem. 22, 137, 265.CrossRefGoogle Scholar