Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T06:43:37.951Z Has data issue: false hasContentIssue false

The influence of N and Mg fertilizers and CaCO3 on the absorption of Mg by oats

Published online by Cambridge University Press:  27 March 2009

A. M. Alston
Affiliation:
Edinburgh School of Agriculture

Extract

The effects of applying CaCO3, MgSO4, 7H2O, (NH4)2SO4 and Ca(NO3)2 to the soil on the drymatter yield and Mg absorption of oats at the 4-5-leaf stage were studied in a factorial pot experiment with a Mg-deficient acid sandj soil.

Yield of dry matter was increased by all treatments, particularly CaCO3.

Applying CaCO3, MgSO4, 7H2O and Ca(NO3)3 generally increased % Mg and total Mg uptake of oats. Applying (NH4)2SO4, which reduced the % Mg in oats growing in the unlimed soil, generally increased % Mg where CaCO3 was also added. The rate of nitrification of NH4, which was slow in the acid soil, was greatly increased by applying CaCO3.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alston, A. M. (1964). Ph.D. Thesis, Edinburgh University.Google Scholar
Alten, F. & Werner, W. (1960). Trans. 7th Int. Congr. Soil Sci. (Madison, 1960), 2, 260.Google Scholar
Arnon, D. I., Fratzke, W. E. & Johnson, C. M. (1942). Pl. Physiol. 17, 515.CrossRefGoogle Scholar
Arnon, D. I. & Johnson, C. M. (1942). Pl. Physiol. 17, 525.CrossRefGoogle Scholar
Dijkshoorn, W. (1957). Neth. J. Agric. Sci. 5, 81.Google Scholar
Dijkshoorn, W. (1960). Meded. Inst. Biol. scheik. Onderz. LandbGewass. Jaarb. p. 123.Google Scholar
Halstead, R. L., Maclean, A. J. & Nielsen, K. F. (1958). Canad. J. Soil Sci. 38, 85.Google Scholar
Hamence, J. H. (1950). J. Sci. Fd Agric. 1, 92.Google Scholar
Itallie, T. B. van (1937). Bodenk. PflErnähr. 5, 303.Google Scholar
Itallie, T. B. van (1938). Soil Sci. 46, 175.Google Scholar
Lemmerman, O., Jessen, W. & Lesch, W. (1932). Z. PflErnähr. Düng. 11 B, 489.Google Scholar
Mehlich, A. & Reed, J. F. (1945). Proc. Soil Sci. Soc. Amer. 10, 87.Google Scholar
Naptel, J. A. (1937). J. Amer. Soc. Agron. 29, 526, 527.Google Scholar
Peech, M. & English, L. (1944). Soil Sci. 57, 167.Google Scholar
Pfaff, C. & Buchner, A. (1958). Z. PflErnähr. Düng. 81, 102.Google Scholar
Plant, W. (1953). Trans. Int. Soc. Soil. Sci. Comm. II and IV (Dublin, 1952), 2, 140.Google Scholar
Robinson, J. B. D., Allen, M. de V. & Gacoka, P. (1959). Analyst, 84, 635.Google Scholar
Schropp, W. (1949). Z. PflErnähr. Düng. 48, 65.CrossRefGoogle Scholar
Wadleigh, C. H. & Shive, J. W. (1939). Soil Sci. 47, 273.CrossRefGoogle Scholar
Welte, E. & Werner, W. (1963). J. Sci. Fd Agric. 14, 180.CrossRefGoogle Scholar
Williams, T. R. & Morgan, R. R. T. (1953). Chemy Ind. 970.Google Scholar
Yien, C. H. & Chesnin, L. (1953). Proc. Soil Sci. Soc. Amer. 17, 240.CrossRefGoogle Scholar
Young, H. Y. & Gill, R. F. (1951). Analyt. Chem. 23, 751.CrossRefGoogle Scholar