Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:31:48.123Z Has data issue: false hasContentIssue false

Future progress in drought tolerance in maize needs new secondary traits and cross combinations

Published online by Cambridge University Press:  03 April 2008

P. MONNEVEUX
Affiliation:
Generation Challenge Programme, Mexico D.F., Mexico
C. SANCHEZ
Affiliation:
CIMMYT, Mexico D.F., Mexico
A. TIESSEN*
Affiliation:
CINVESTAV-IPN, Irapuato, Mexico
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The use of secondary traits such as number of ears per plant, grains per ear, the interval from anthesis to silking, leaf senescence and leaf rolling, together with management of water stress and recurrent selection, have permitted a considerable increase in drought tolerance in the CIMMYT maize source germplasm populations Drought Tolerant Population (DTP) and La Posta Sequía (LPS). Inbred lines were extracted from DTP C9 and LPS C7 cycles and then used for generating single and three-ways hybrids. These were evaluated under normal irrigation and managed drought conditions. A weak, and in some cases no longer significant, correlation was found between grain yield and the traits initially used for selection. Most prominently, the relationship between anthesis-silking interval and grain yield became much weaker in these hybrids. Conversely, significant negative correlations were found between tassel dry weight and grain yield. Three-way hybrids involving two DTP lines yielded more than those involving one only, indicating the feasibility of gene pyramiding for drought tolerance. Overall, the results suggested that the relationship between grain yield and secondary traits has been modified due to continuous selection in the LPS and DTP populations. Some long-established secondary traits have become less important, while others have become more relevant. Mean grain weight, previously not used within a drought selection index, was strongly correlated with yield in the present study. The importance of traits related to the availability in C products for the development of ears and grains are discussed. The results indicate that the traits of source organs contribute marginally to drought tolerance; variation of leaf or root traits seems to be less important than variation in tassel parameters for increasing drought tolerance. For ensuring further progress in drought tolerance in maize, the solution might reside in the manipulation of sink organs. It is therefore suggested that selection for even greater number of ears, bigger grains and smaller tassels may help to increase grain yield under water limited environments in the near future. A short discussion on the optimal choice of parental lines for developing hybrids with maximum expression of drought tolerance concludes the paper.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerson, R. C. (1983). Comparative physiology and water relations of two corn hybrids during water stress. Crop Science 23, 278283.Google Scholar
Andrade, F. H., Vega, C., Uhart, S., Cirilo, A., Cantarero, A. & Valentinuz, O. (1999). Kernel number determination in maize. Crop Science 39, 453459.Google Scholar
Araus, J. L., Reynolds, M. P. & Acevedo, E. (1993). Leaf posture, grain yield, growth, leaf structure and carbon isotope discrimination in wheat. Crop Science 33, 12731279.Google Scholar
Bänziger, M. & Lafitte, H. R. (1997). Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Science 37, 11101117.CrossRefGoogle Scholar
Bänziger, M., Edmeades, G. O., Beck, D. & Bellon, M. (2000). Breeding for Drought and Nitrogen Stress Tolerance in Maize. From Theory to Practice. El Batán, Mexico: CIMMYT.Google Scholar
Bechoux, N., Bernier, G. & Lejeune, P. (2000). Environmental effects on the early stages of tassel morphogenesis in maize (Zea mays L.). Plant Cell & Environment 23, 9198.Google Scholar
Berke, T. G. & Rocheford, T. R. (1999). Quantitative trait loci for tassel traits in maize. Crop Science 39, 14391443.CrossRefGoogle Scholar
Betrán, F. J., Bänziger, M. & Beck, D. L. (1997). Relationship between line and topcross performance under drought and non-stressed conditions in tropical maize. In Developing Drought and Low-N Tolerant Maize (Eds Edmeades, G. O., Bänziger, M., Mickelson, H. R. & Peña-Valdivia, C. B.), pp. 383386. El Batán, Mexico: CIMMYT.Google Scholar
Betrán, F. J., Ribaut, J. M., Beck, D. & de León, D. G. (2003). Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Science 43, 797806.CrossRefGoogle Scholar
Binford, G. D. & Blackmer, A. M. (1993). Visually rating the nitrogen status of corn. Journal of Production Agriculture 6, 4146.Google Scholar
Bolaños, J. & Edmeades, G. O. (1993 a). Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crops Research 31, 233252.CrossRefGoogle Scholar
Bolaños, J. & Edmeades, G. O. (1993 b). Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Research 31, 253268.Google Scholar
Bolaños, J. & Edmeades, G. O. (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research 48, 6580.CrossRefGoogle Scholar
Bolaños, J., Edmeades, G. O. & Martinez, L. (1993). Eight cycles of selection for drought tolerance in lowland tropical maize. III. Responses in drought-adaptive physiological and morphological traits. Field Crops Research 31, 269286.Google Scholar
Bruce, W. B., Edmeades, G. O. & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany 53, 1325.Google Scholar
Byrne, P. F., Bolaños, J., Edmeades, G. O. & Eaton, D. L. (1995). Gains from selection under drought versus multilocation testing in related tropical maize populations. Crop Science 35, 6369.CrossRefGoogle Scholar
Camacho, R. G. & Caraballo, D. F. (1994). Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Scientia Agricola 51, 453458.Google Scholar
Chapman, S. C. & Edmeades, G. O. (1999). Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Science 39, 13151324.CrossRefGoogle Scholar
Chloupek, O. (1972). The relationship between electrical capacitance and some other parameters of plant roots. Biologia Plantarum 14, 227230.Google Scholar
Dalton, F. N. (1995). In situ root extent measurements by electrical capacitance methods. Plant and Soil 173, 157165.Google Scholar
de Farias Neto, A. L. & Miranda Filho, J. B. (2000). Inbreeding in two maize subpopulations selected for tassel size. Scientia Agricola 57, 487490.Google Scholar
de Leon, N. & Coors, J. G. (2002). Twenty-four cycles of mass selection for prolificacy in the Golden Glow maize population. Crop Science 42, 325333.Google Scholar
Dwyer, L. M., Tollenaar, M. & Houwing, L. (1991). A non-destructive method to monitor leaf greenness in corn. Canadian Journal of Plant Science 71, 505509.Google Scholar
Edmeades, G. O., Bolaños, J., Lafitte, H. R., Rajaram, S., Pfeiffer, W. & Fischer, R. A. (1989). Traditional approaches to breeding for drought resistance in cereals. In Drought Resistance in Cereals (Ed. Baker, F. W. G.), pp. 2752. Wallingford, UK: ICSU and CABI.Google Scholar
Edmeades, G. O., Bolaños, J. & Chapman, S. C. (1997). Value of secondary traits in selecting for drought tolerance in tropical maize. In Developing Drought and Low-N Tolerant Maize (Eds Edmeades, G. O., Bänziger, M., Mickelson, H. R. & Peña-Valdivia, C. B.), pp. 222234. El Batán, Mexico: CIMMYT.Google Scholar
Edmeades, G. O., Bolaños, J., Chapman, S. C., Lafitte, H. R. & Bänziger, M. (1999). Selection improves drought tolerance in tropical maize populations. I. Gains in biomass, grain yield and harvest index. Crop Science 39, 13061315.CrossRefGoogle Scholar
Fischer, K. S., Edmeades, G. O. & Johnson, E. C. (1987). Recurrent selection for reduced tassel branch number and reduced leaf area density above the ear in tropical maize populations. Crop Science 27, 11501156.Google Scholar
Geraldi, I. O., Mirando Filho, J. B. & Vencosvsky, R. (1985). Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica 30, 114.Google Scholar
Hauck, B., Gay, A. P., Macduff, J., Griffiths, C. M. & Thomas, H. (1997). Leaf senescence in a non-yellowing mutant of Festuca pratensis: implications of the stay-green mutation for photosynthesis, growth and nitrogen nutrition. Plant Cell & Environment 20, 10071018.Google Scholar
Hunter, R. B., Daynard, T. B., Hume, D. J., Tanner, J. W., Curtis, J. D. & Kannenberg, L. W. (1969). Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Science 9, 405406.CrossRefGoogle Scholar
Jackson, P., Robertson, M., Cooper, M. & Hammer, G. (1996). The role of physiological understanding in plant breeding: from a breeding perspective. Field Crops Research 49, 1139.Google Scholar
Lafitte, H. R. & Edmeades, G. O. (1995). Stress tolerance in tropical maize is linked to constitutive changes in ear growth characteristics. Crop Science 35, 820826.CrossRefGoogle Scholar
Lafitte, H. R., Blum, A. & Atlin, G. (2003). Using secondary traits to help identify drought-tolerant genotypes. In Breeding Rice for Drought-prone Environments (Eds Fischer, K. S., Lafitte, R. H., Fukai, S., Atlin, G. & Hardy, B.), pp. 3748. Los Baños, The Philippines: IRRI.Google Scholar
Lambert, R. J. & Johnson, R. R. (1978). Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Science 18, 499502.Google Scholar
Magalhães, P. C., Durães, F. O. M., de Oliveira, A. C. & Gama, E. E. G. E. (1999). Efeitos de diferentes técnicas de despendoamento na produção de milho. Scientia Agricola 56, 7782.CrossRefGoogle Scholar
McMillan, I., Fairfull, R. W., Friars, G. W. & Quinton, M. (1995). The effects of simultaneous selection on the genetic correlation. Theoretical & Applied Genetics 91, 776779.Google Scholar
Mickelson, S. M., Stuber, C. S., Senior, L. & Kaeppler, S. M. (2002). Quantitative trait loci controlling leaf and tassel traits in a B73×MO17 population of maize. Crop Science 42, 19021909.Google Scholar
Monneveux, P. & Ribaut, J. M. (2006). Secondary traits for drought tolerance improvement in cereals. In Drought Tolerance in Cereals (Ed. Ribaut, J. M.), pp. 97143. Binghamtown, NY, USA: The Haworth Press Inc.Google Scholar
Monneveux, P., Zaidi, P. H. & Sanchez, C. (2005). Population density and low nitrogen affects yield-associated traits in tropical maize. Crop Science 45, 535545.Google Scholar
Monneveux, P., Sanchez, C., Beck, D. & Edmeades, G. O. (2006). Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Science 46, 180191.CrossRefGoogle Scholar
Mosterd, A. J. & Marais, J. N. (1982). The effect of detasseling on the yield of irrigated maize. Crop Production 11, 163167.Google Scholar
Mugo, S. N., Smith, M. E., Bänziger, M., Setter, T. L., Edmeades, G. O. & Elings, A. (1998). Performance of early maturing Katumani and Kito maize composites under drought at the seedling and flowering stages. African Crop Science Journal 6, 329344.CrossRefGoogle Scholar
Pandey, S., Diallo, A. O., Islam, T. M. T. & Deutsch, J. (1986). Progress from selection in eight tropical maize populations using international testing. Crop Science 26, 879884.CrossRefGoogle Scholar
Poneleit, C. G. & Egli, D. B. (1979). Kernel growth rate and duration in maize as affected by plant density and genotype. Crop Science 19, 385388.CrossRefGoogle Scholar
Ramírez-Vallejo, P. & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica 99, 127136.Google Scholar
Ribaut, J. M., Edmeades, G. O., Perotti, E. & Hoisington, D. (2000). QTL analyses, MAS results, and perspectives for drought tolerance improvement in tropical maize. In Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-limited Environments. A Strategic Planning Workshop held at CIMMYT, El Batán, Mexico, 21–25 June 1999 (Eds Ribaut, J. M. & Poland, D.), pp. 131136. El Batán, Mexico: CIMMYT.Google Scholar
Sangoi, L. & Salvador, R. J. (1998). Effect of maize plant detasseling on grain yield, tolerance to high density and drought stress. Pesquisa Agropecuaria Brasileira 33, 677684.Google Scholar
SAS Institute (1987). SAS/STAT User's Guide, version 6. Cary, NC, USA: SAS Institute, Inc.Google Scholar
Smart, C. M., Hosken, S. E., Thomas, H., Greaves, J. A., Blair, B. G. & Schuch, W. (1995). The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiologia Plantarum 93, 673682.Google Scholar
Sobrado, M. (1987). Leaf rolling: a visual indicator of water deficit in maize (Zea mays L.). Maydica 32, 918.Google Scholar
Tiessen, A., Lunn, J. & Geigenberger, P. (2006). Carbohydrate metabolism under water-limited conditions. In Drought Tolerance in Cereals (Ed. Ribaut, J. M.), pp. 449503. Binghamtown, NY, USA: The Haworth Press Inc.Google Scholar
van Beem, J., Smith, M. E. & Zobel, R. W. (1998). Estimating root mass in maize using a portable capacitance meter. Agronomy Journal 90, 566570.Google Scholar
Vasal, S. K., Cordova, H. S., Beck, D. L. & Edmeades, G. O. (1997). Choices among breeding procedures and strategies for developing stress tolerant maize germplasm. In Developing Drought and Low-N Tolerant Maize (Eds Edmeades, G. O., Bänziger, M., Mickelson, H. R. & Peña-Valdivia, C. B.), pp. 336337. El Batán, Mexico: CIMMYT.Google Scholar
Westgate, M. E. & Boyer, J. S. (1986). Reproduction at low silk and pollen water potentials in maize. Crop Science 26, 951956.CrossRefGoogle Scholar
Wilhelm, W. W., Johnson, B. E. & Schepers, J. S. (1995). Yield, quality and nitrogen use of inbred corn with varying numbers of leaves removed during detasseling. Crop Science 35, 209212.Google Scholar
Wolfe, D. W., Henderson, D. W., Hsiao, T. C. & Alvino, A. (1988). Interactive water and nitrogen effects on senescence of maize. I. Leaf area duration, nitrogen distribution, and yield. Agronomy Journal 80, 859864.CrossRefGoogle Scholar
Zinselmeier, C., Lauer, M. J. & Boyer, J. S. (1995). Reversing drought-induced losses in grain yield. Sucrose maintains embryo growth in maize. Crop Science 35, 13901400.Google Scholar
Zinselmeier, C., Jeong, B. R. & Boyer, J. S. (1999). Starch and the control of kernel number in maize at low water potentials. Plant Physiology 121, 2535.CrossRefGoogle ScholarPubMed