Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:37:15.028Z Has data issue: false hasContentIssue false

Effect of cereal processing (grinding to 3·5 mm or dry-rolling) in maize- or barley-based high-concentrate diets on rumen environment of beef cattle during the late fattening period

Published online by Cambridge University Press:  27 November 2015

A. GIMENO
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
A. AL ALAMI
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain Central Laboratory of Animal Health & Food Safety, Al-Aroub Station for Agricultural Research, Hebron, West Bank, Palestine
D. R. YAÑEZ-RUIZ
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
A. DE VEGA
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
S. SCHAUF
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
M. FONDEVILA*
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
C. CASTRILLO
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA- Universidad de Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The type and processing of cereals for beef cattle are key factors to maximize performance without increasing the risk of ruminal acidosis. The current work studied the effect of grinding (G) or dry-rolling (R) the cereals in a concentrate based on maize (M) or barley (B) on the rumen environment of eight 6-month-old Holstein calves, which received either M or B for 70 days, offered as G and R in two consecutive periods. Daily feed intake pattern, rumen fermentation traits, total rumen bacteria and relative proportions of Streptococcus bovis and Selenomonas ruminantium were characterized twice in each period at 0, 4 and 8 h after feeding. Dry-rolling promoted a 0·25 reduction of concentrate intake during the first 4 h after feeding. Neither cereal type nor its processing form promoted differences in ruminal fermentation at 0 and 4 h; however, 8 h after feeding R cereals resulted in higher rumen pH (6·17 v. 5·71) and lower concentration of lactic acid (88·1 v. 156 mg/l) and volatile fatty acids (only in diet B, 118 v. 164 mm/l) compared with G. Little effect of dietary factors in the target rumen microorganisms were observed. The more balanced fermentation observed with R cereals may be explained by the lower concentrate intake promoted during the first 4 h, coupled with a more difficult access of bacterial enzymes to their starch, thus reducing its fermentation rate. Therefore, feeding dry-rolled cereals may be useful to reduce the risk of acidosis by regulating the intake pattern of the concentrate and/or its fermentation rate.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abecia, L., Toral, P. G., Martín-García, A. I., Martínez, G., Tomkins, N. W., Molina-Alcaide, E., Newbold, C. J. & Yáñez-Ruiz, D. R. (2012). Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science 95, 20272036.CrossRefGoogle ScholarPubMed
AOAC (2005). Official Methods of Analysis of AOAC International, 18th edn, Gaithersburg, MD, USA: AOAC International.Google Scholar
Barker, S. B. & Summerson, W. H. (1941). The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry 138, 535554.CrossRefGoogle Scholar
Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J. & McAllister, T. A. (2005). Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. Journal of Animal Science 83, 11161132.CrossRefGoogle ScholarPubMed
Blanch, M., Calsamiglia, S., DiLorenzo, N., DiCostanzo, A., Muetzel, S. & Wallace, R. J. (2009). Physiological changes in rumen fermentation during acidosis induction and its control using a multivalent polyclonal antibody preparation in heifers. Journal of Animal Science 87, 17221730.CrossRefGoogle ScholarPubMed
Calsamiglia, S., Blanch, M., Ferret, A. & Moya, D. (2012). Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology 172, 4250.CrossRefGoogle Scholar
Castillo, C., Benedito, J. L., Mendez, J., Pereira, V., Lopez-Alonso, M., Miranda, M. & Hernandez, J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology 115, 101116.CrossRefGoogle Scholar
Castrillo, C., Mota, M., Van Laar, H., Martin-Tereso, J., Gimeno, A., Fondevila, M. & Guada, J. A. (2013). Effect of compound feed pelleting and die diameter on rumen fermentation in beef cattle fed high concentrate diets. Animal Feed Science and Technology 180, 3443.CrossRefGoogle Scholar
Chaney, A. L. & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry 8, 130132.CrossRefGoogle ScholarPubMed
Chaucheyras-Durand, F., Chevaux, E., Martin, C. & Forano, E. (2012). Use of yeast probiotics in ruminants: effects and mechanisms of action on rumen pH, fibre degradation and microbiota according to the diet. In Probiotic in Animals (Ed. Rigobelo, E. C.), pp. 119152. Rijeka, Croatia: InTech.Google Scholar
Chen, Y. H., Oba, M. & Guan, L. L. (2012). Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Veterinary Microbiology 159, 451459.CrossRefGoogle ScholarPubMed
Cone, J. W. & Becker, P. M. (2012). Fermentation kinetics and production of volatile fatty acids and microbial protein by starchy feedstuffs. Animal Feed Science and Technology 172, 3441.CrossRefGoogle Scholar
De Blas, C., Mateos, G. G. & García-Rebollar, P. (2010). Ingredientes para Piensos: Tablas FEDNA de Composición y Valor Nutritivo de Alimentos para la Fabricación de Piensos Compuestos, 3rd edn, Madrid, Spain: Fundación Española para el Desarrollo de la Nutrición Animal.Google Scholar
Dehghan-banadaky, M., Corbett, R. & Oba, M. (2007). Effects of barley grain processing on productivity of cattle. Animal Feed Science and Technology 137, 124.CrossRefGoogle Scholar
Denman, S. E. & McSweeny, C. S. (2005). Quantitative (real-time) PCR. In Methods in Gut Microbial Ecology in Ruminants (Eds Makkar, H. P. S. & McSweeny, C. S.), pp. 105115. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Devant, M., Ferret, A., Gasa, J., Calsamiglia, S. & Casals, R. (2000). Effects of protein concentration and degradability on performance, ruminal fermentation, and nitrogen metabolism in rapidly growing heifers fed high-concentrate diets from 100 to 230 kg body weight. Journal of Animal Science 78, 16671676.CrossRefGoogle ScholarPubMed
DiLorenzo, N., Diez-Gonzalez, F. & DiCostanzo, A. (2006). Effects of feeding polyclonal antibody preparations on ruminal bacterial populations and ruminal pH of steers fed high-grain diets. Journal of Animal Science 84, 21782185.CrossRefGoogle ScholarPubMed
European Commission (2009). Commission Regulation (EC) No. 152/2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union 52, 1130.Google Scholar
Fernando, S. C., Purvis, H. T. II, Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., Roe, B. A. & Desilva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology 76, 74827490.CrossRefGoogle ScholarPubMed
Gimeno, A., Al Alami, A., Abecia, L., de Vega, A., Fondevila, M. & Castrillo, C. (2015). Effect of type (barley vs maize) and processing (grinding vs dry rolling) of cereal on ruminal fermentation and microbiota of beef calves during the early fattening period. Animal Feed Science and Technology 199, 113126.CrossRefGoogle Scholar
González, L. A., Manteca, X., Calsamiglia, S., Schwartzkopf-Genswein, K. S. & Ferret, A. (2012). Ruminal acidosis in feedlot cattle: interplay between feed ingredients, rumen function and feeding behavior (a review). Animal Feed Science and Technology 172, 6679.CrossRefGoogle Scholar
Heinrichs, J. (2005). Rumen development in the dairy calf. Advances in Dairy Technology 17, 179187.Google Scholar
Henning, P. H., Horn, C. H., Leeuw, K. J., Meissner, H. H. & Hagg, F. M. (2010). Effect of ruminal administration of the lactate-utilizing strain Megasphaera elsdenii (Me) NCIMB 41125 on abrupt or gradual transition from forage to concentrate diets. Animal Feed Science and Technology 157, 2029.CrossRefGoogle Scholar
Khafipour, E., Li, S., Plaizier, J. C. & Krause, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology 75, 71157124.CrossRefGoogle ScholarPubMed
Krause, K. M. & Oetzel, G. R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Animal Feed Science and Technology 126, 215236.CrossRefGoogle Scholar
Leedle, J. A. Z., Bryant, M. P. & Hespell, R. B. (1982). Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low or high forage diets. Applied and Environmental Microbiology 44, 402412.CrossRefGoogle ScholarPubMed
Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., Arai, H., Tanimoto, I., Nishimura, F. & Takashiba, S. (2003). Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology and Medical Microbiology 39, 8186.CrossRefGoogle ScholarPubMed
Mao, S. Y., Zhang, R. Y., Wang, D. S. & Zhu, W. Y. (2013). Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 24, 1219.CrossRefGoogle ScholarPubMed
McAllister, T. A., Phillippe, R. C., Rode, L. M. & Cheng, K. J. (1993). Effect of the protein matrix on the digestion of cereal-grains by ruminal microorganisms. Journal of Animal Science 71, 205212.CrossRefGoogle ScholarPubMed
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85, 12171240.Google ScholarPubMed
Mould, F. L., Kliem, K. E., Morgan, R. & Mauricio, R. M. (2005). In vitro microbial inoculum: a review of its function and properties. Animal Feed Science and Technology 123–124, 3150.CrossRefGoogle Scholar
Nagaraja, T. G., Galyean, M. L. & Cole, N. A. (1998). Nutrition and disease. Veterinary Clinics of North America: Food Animal Practice 14, 257277.Google ScholarPubMed
Nagaraja, T. G. & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science 90(Suppl 1), E17E38.CrossRefGoogle ScholarPubMed
Offner, A., Bach, A. & Sauvant, D. (2003). Quantitative review of in situ starch degradation in the rumen. Animal Feed Science and Technology 106, 8193.CrossRefGoogle Scholar
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. & Gill, D. R. (1997). The effect of grain source and grain processing on performance of feedlot cattle: a review. Journal of Animal Science 75, 868879.CrossRefGoogle ScholarPubMed
Petri, R. M., Schwaiger, T., Penner, G. B., Beauchemin, K. A., Forster, R. J., McKinnon, J. J. & McAllister, T. A. (2013). Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS ONE 8, e83424. doi: 10.1371/journal.pone.0083424CrossRefGoogle ScholarPubMed
Pond, K. R., Tolley, E. A., Ellis, W. C. & Matis, J. H. (1984). A method for describing the weight distribution of particles from sieved forage. In Techniques in Particle Size Analysis of Feed and Digesta in Ruminants (Ed. Kennedy, P. M.), pp. 123133. Edmonton, Alberta, Canada: Canadian Society of Animal Science.Google Scholar
Robertson, J. B. & Van Soest, P. J. (1981). The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Foods (Eds James, W. P. T. & Theander, O.), pp. 123158. New York, USA: Marcel Dekke.Google Scholar
Russell, J. B. (1998). The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science 81, 32223230.CrossRefGoogle ScholarPubMed
SAS Institute Inc (2008). SAS/STAT Guide for Personal Computers, Version 9.2. Cary, NC, USA: SAS Institute.Google Scholar
Stevenson, D. M. & Weimer, P. J. (2007). Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology 75, 165174.CrossRefGoogle ScholarPubMed
Svihus, B., Uhlen, A. K. & Harstad, O. M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Animal Feed Science and Technology 122, 303320.CrossRefGoogle Scholar
Svihus, B. & Zimonja, O. (2011). Chemical alterations with nutritional consequences due to pelleting animal feeds: a review. Animal Production Science 51, 590596.CrossRefGoogle Scholar
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. (1994). A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.CrossRefGoogle Scholar
Wallace, R. J., Rooke, J. A., Duthie, C. A., Hyslop, J. J., Ross, D. W., McKain, N., De Souza, S. M., Snelling, T. J., Waterhouse, A. & Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports 4, article number 5892. doi: 10.1038/srep05892CrossRefGoogle ScholarPubMed