Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T06:38:51.821Z Has data issue: false hasContentIssue false

Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats

Published online by Cambridge University Press:  04 November 2016

A. E. KHOLIF*
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
T. A. MORSY
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
O. H. MATLOUP
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
U. Y. ANELE
Affiliation:
Carrington Research Extension Center, North Dakota State University, 663 Hwy. 281 NE, Carrington ND 58421, USA
A. G. MOHAMED
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
A. B. EL-SAYED
Affiliation:
Fertilization Technology Department, Algal Biotechnology Unit, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Fifteen lactating Damascus goats (44 ± 0·8 kg body weight) were used in a completely randomized design to evaluate the supplementation of Chlorella vulgaris microalgae at 0 (Control), 5 (Alg05) and 10 g/goat/day (Alg10) for 12 weeks. Chlorella vulgaris treatments increased feed intake and apparent diet digestibility compared with a control diet. No differences were noted in the ruminal pH and ammonia-N concentrations, but increased concentration of total volatile fatty acids and propionic acid were observed in goats fed with Alg05 and Alg10. Diets of Alg05 and Alg10 increased serum glucose concentration but decreased glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and cholesterol concentrations. Additionally, C. vulgaris supplementation moderately increased milk yield, energy corrected milk, total solids, solids not fat and lactose. Feeding Alg05 and Alg10 diets increased milk unsaturated fatty acids with concomitant increases in total conjugated linoleic acid concentrations. It is concluded that the daily inclusion of 5 or 10 g of C. vulgaris in the diets of Damascus goats increased milk yield and positively modified milk fatty acid profile.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedi, E. & Sahari, M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Science & Nutrition 2, 443463.CrossRefGoogle ScholarPubMed
Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M. & McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science 96, 354363.Google Scholar
Annison, E. F. (1954). Some observations on volatile fatty acids in the sheep's rumen. Biochemical Journal 57, 400405.Google Scholar
AOAC (1997). Official Methods of Analysis of the Association of Official Analytical Chemist, Vol. 1, 16th edn. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Boyd, J. W. (1984). The interpretation of serum biochemistry test results in domestic animals. Veterinary Clinical Pathology 13, 714.CrossRefGoogle ScholarPubMed
Carro, M. D. & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.Google Scholar
Chakraborty, M., McDonald, A. G., Nindo, C. & Chen, S. (2013). An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Research 2, 230236.Google Scholar
El-Sayed, A. E. B., Abdalla, F. E. & Abdel-Maguid, A. A. (2001). Use of some commercial fertilizer compounds for Scenedesmus cultivation. Egyptian Journal of Phycology 2, 916.Google Scholar
El-Sayed, A. B., Battah, M. G. & Wehedy, E. (2015). Utilization efficiency of artificial carbon dioxide and corn steam liquor by Chlorella vulgaris . Biolife 3, 391402.CrossRefGoogle Scholar
FASS (2010). Guide for the Care and use of Agricultural Animals in Research and Teaching, 3rd edn. Champaign, IL: Federation of Animal Science Societies.Google Scholar
Ferret, A., Plaixats, J., Caja, G., Gasa, J. & Prio, P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Ruminant Research 33, 145152.Google Scholar
Flatt, W. P., Warner, R. G. & Loosli, J. K. (1956). Absorption of volatile fatty acids from the reticulo-rumen of young dairy calves. Journal of Dairy Science 39, 135 (abstract).Google Scholar
Glover, K. E., Budge, S., Rose, M., Rupasinghe, H. P. V., MacLaren, L., Green-Johnson, J. & Fredeen, A. H. (2012). Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. Journal of Dairy Science 95, 27972809.CrossRefGoogle ScholarPubMed
Han, J. G., Kang, G. G., Kim, J. K. & Kim, S. H. (2002). The present status and future of Chlorella. Food Science and Industry 6, 6469.Google Scholar
Hosten, A. O. (1990). BUN and creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd edn. (Eds Walker, H. K., Hall, W. D. & Hurst, J. W.), pp. 874878. Boston, UK: Butterworths.Google Scholar
ISO-IDF (2002). Milk Fat-preparation of Fatty Acid Methyl Esters. International Standard ISO 15884-IDF 182. 2002. Brussels, Belgium: International Dairy Federation.Google Scholar
Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products – major industrial species. Chlorella. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Ed. Richmond, A.), pp. 255263. Oxford, UK: Blackwell Science.Google Scholar
Janczyk, P., Langhammer, M., Renne, U., Guiard, V. & Souffrant, W. B. (2006). Effect of feed supplementation with Chlorella vulgaris powder on mice reproduction. Archiva Zootechnica 9, 122134.Google Scholar
Kadegowda, A. K. G., Bionaz, M., Piperova, L. S., Erdman, R. A. & Loor, J. J. (2009). Peroxisome proliferators-activated receptor-γ activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science 92, 42764289.Google Scholar
Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimkopoulos, D. A. (2008). Spirulina in clinical practice: evidence-based human applications. Evidence-Based Complementary and Alternative Medicine: cCAM 2011, article ID 531053. doi: 10.1093/ecam/nen058 Google Scholar
Kholif, A. E., Khattab, H. M., El-Shewy, A. A., Salem, A. Z. M., Kholif, A. M., El-Sayed, M. M., Gado, H. M. & Mariezcurrena, M. D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus . Asian-Australasian Journal of Animal Sciences 27, 357364.Google Scholar
Kholif, A. E., Morsy, T. A., Gouda, G. A., Anele, U. Y. & Galyean, M. L. (2016). Effect of feeding diets with processed Moringa oleifera meal as protein source in lactating Anglo-Nubian goats. Animal Feed Science and Technology 217, 4555.Google Scholar
Kholif, A. E., Elghandour, M. M. Y., Salem, A. Z. M., Barbabosa, A., Márquez, O. & Odongo, N. E. (in press). The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro gas, methane and carbon dioxide production. Journal of Agricultural Science, Cambridge. doi: 10.1017/S0021859616000812 Google Scholar
Kotrbáček, V., Doubek, J. & Doucha, J. (2015). The chlorococcalean alga Chlorella in animal nutrition: a review. Journal of Applied Phycology 27, 21732180.Google Scholar
Lum, K. K., Kim, J. & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology 4, 53. doi: 10.1186/2049–1891-4-53 Google Scholar
Nagaoka, S., Shimizu, K., Kaneko, H., Shibayama, F., Morikawa, K., Kanamaru, Y., Otsuka, A., Hirahashi, T. & Kato, T. (2005). A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. Journal of Nutrition 135, 24252430.CrossRefGoogle Scholar
NRC (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: National Academies Press.Google Scholar
NRC (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: National Academies Press.Google Scholar
Radhakrishnan, S., Bhavan, P. S., Seenivasan, C., Shanthi, R. & Muralisankar, T. (2014). Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii . Journal of Basic and Applied Zoology 67, 2533.Google Scholar
Reynolds, C. K., Cannon, V. L. & Loerch, S. C. (2006). Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Animal Feed Science and Technology 131, 333357.Google Scholar
Rigout, S., Hurtaud, C., Lemosquet, S., Bach, A. & Rulquin, H. (2003). Lactational effect of propionic acid and duodenal glucose in cows. Journal of Dairy Science 86, 243253.Google Scholar
Rojo, R., Kholif, A. E., Salem, A. Z. M., Elghandour, M. M. Y., Odongo, N. E., Montes De Oca, R., Rivero, N. & Alonso, M. U. (2015). Influence of cellulase addition to dairy goat diets on digestion and fermentation, milk production and fatty acid content. Journal of Agricultural Science, Cambridge 153, 15141523.CrossRefGoogle Scholar
Sales, J. & Janssens, G. P. J. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. Journal of Animal and Feed Sciences 12, 383401.Google Scholar
SAS (2006). Statistical Analysis Systems. Version 9.2. Cary, NC: SAS Institute.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro . British Journal of Nutrition 32, 199208.Google Scholar
Shingfield, K. J., Chilliard, Y., Toivonen, V., Kairenius, P. & Givens, D. I. (2008). Trans fatty acids and bioactive lipids in ruminant milk. In Bioactive Components of Milk (Ed. Bösze, Z.), pp. 365. Advances in Experimental Medicine and Biology 606. Dordrecht, The Netherlands: Springer.Google Scholar
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy 56, 365379.Google Scholar
Sjaunja, L. O., Baevre, L., Junkkarinen, L., Pedersen, J. & Setala, J. (1991). A Nordic proposal for an energy corrected milk (ECM) formula. In Performance Recording of Animals. State of the Art (Eds Crettenand, J., Moll, J., Mosconi, C. & Wegmann, S.), pp. 156157. EAAP Publication no. 50. Wageningen, The Netherlands: Wageningen Academic.Google Scholar
Spackman, D. H., Stein, W. H. & Moor, S. (1958). Automatic recording apparatus for use in chromatography of amino acids. Analytical Chemistry 30, 11901206.Google Scholar
Stainer, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue green algae (order Chroococcales). Bacteriological Reviews 35, 171205.CrossRefGoogle Scholar
Tibbetts, S. M., MacPherson, T., McGinn, P. J. & Fredeen, A. H. (in press). In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Research. doi: 10.1016/j.algal.2016.01.016.Google Scholar
Toral, P. G., Hervás, G., Gómez-Cortés, P., Frutos, P., Juárez, M. & De La Fuente, M. A. (2010). Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. Journal of Dairy Science 93, 16551667.Google Scholar
Tsiplakou, E., Abdullah, M. A. M., Skliros, D., Chatzikonstantinou, M., Flemetakis, E., Labrou, N. & Zervas, G. (2016). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition. doi: 10.1111/jpn.12521.Google Scholar
Tyrell, H. F. & Reid, J. T. (1965). Prediction of the energy value of cows’ milk. Journal of Dairy Science 48, 12151223.Google Scholar
Ulbricht, T. L. V. & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. Lancet 338, 985992.Google Scholar
Van Emon, M. L., Loy, D. D. & Hansen, S. L. (2015). Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae. Journal of Animal Science 93, 31213129.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vanhatalo, A., Varvikko, T. & Huhtanen, P. (2003). Effects of various glucogenic sources on production and metabolic responses of dairy cows fed grass silage-based diets. Journal of Dairy Science 86, 32493259.Google Scholar