Article contents
Contributions to the Chemistry of Cheddar Cheese
Published online by Cambridge University Press: 27 March 2009
Extract
The ‘ripening’ of cheese consists of a number of chemical changes affecting the fats, proteins and carbohydrates. The protein changes are of the general proteolytic character and are produced by bacteria, fungi, rennet-enzymes and other enzymes formed by bacteria and fungi during their growth in the cheese. The products derived from casein—the main protein-constituent of cheese—are intermediate digestive substances together with aminoacids, and secondary products formed by bacteria from the aminoacids. In a thorough study of the cheeseripening process it is of fundamental importance to ascertain what specific compounds are formed. Such knowledge must be possessed before the actual working of the process can be fully understood. It is well known to everybody connected with the manufacture of cheese that the quality of the final product depends on the nature of the ripening process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1912
References
page 225 note 1 Nierenstein, M., “The transformation of proteins into fat during the ripening of Cheese,” Proceedings of the Royal Society, B. 83, p. 301 [1911].CrossRefGoogle Scholar
page 226 note 1 Von, Herwerden, Zeitschr. f. physiolog. Chemie, 52, 184 [1907].Google Scholar
page 226 note 2 The name “Tyrocasein” from the Greek τνρòs (cheese) would express my view better; however, as it will be seen further, that name has been adopted by Winterstein for one of the intermediate products formed during the ripening process.
page 226 note 3 Weidemann, , Landwirtsch. Jahrb. 11, 587 [1882].Google Scholar
page 226 note 4 Rose u. Schulze, ibid. 13, 115 [1884].
page 226 note 5 Benecke u. Schulze, ibid. 16, 317 [1887].
page 227 note 1 van Slyke, and Hart, , Amer. Chan. Journ. 28, 429 [1902]Google Scholar and ibid. 29, 371 [1903].
page 227 note 2 Winterstein, , Zeitschr. f. physiol. Chemie, 41, 485 [1904].CrossRefGoogle Scholar
page 227 note 3 Winterstein u. Thöni, ibid. 38, 28 [1902].
page 227 note 4 Bisegger, , Dissertation, Zurich [1907].Google Scholar
page 227 note 5 Winterstein, l.c.
page 227 note 6 Winterstein, l.c.
page 227 note 7 Bisegger, l.c.
page 227 note 8 Proust, , Ann. Chim. et Phys. [2], 10, 40 [1818].Google Scholar
page 227 note 9 Sieber, , Jour, prakt. Chemie [2], 21, 213 [1880].Google Scholar
page 227 note 10 Winterstein, u. Thöni, Zeitschr. f. physiol. Chemie, 36, 28 [1902].CrossRefGoogle Scholar
page 228 note 1 Steinegger, , Landwirtsch. Jahrb. 15, 132 [1886].Google Scholar
page 228 note 2 Winterstein, , Zeitschr. f. physiol. Chemie, 41, 485 [1904].CrossRefGoogle Scholar
page 228 note 3 All those aminoacids which I have proved for the first time to be present in cheese are marked *.
page 228 note 4 Emil, Fischer, Zeitschr. f. physiol. Chemie, 33, 151 [1901];Google Scholar see also ibid. 39, 155 [1903] and Abderhalden, ibid, 44, 23 [1905], 63, 19 [1907].
page 229 note 1 Skraup, , Monatsheft f. Chemie, 29, 791 [1908].CrossRefGoogle Scholar
page 229 note 2 Kossel, u. Kutscher, Zeitschr. f. physiol. Chemie, 31, 382 [1900].Google Scholar
page 229 note 3 Emil Fischer, ibid. 33, 151 [1901].
page 229 note 4 van Slyke, and Hart, (Amer. Chem. Jour. 29, 380 [1903]), who have examined an American Cheddar cheese after 4½ months' ripening, state: “We are led to conclude that arginin does not exist in appreciable quantities in cheese of this age.” These authors only obtained from 3 kgrms. cheese, 0·255 gr. arginin.Google Scholar
page 230 note 1 Benecke, E.Schulze, u., Landwirtsch. Jahrb. 16, 317 [1887];Google Scholar Ulrich Weichmann, ibid. 1728 [1888]; Winterstein, , Zeitschr. f. physiol. Chemie, 41, 485 [1904];CrossRefGoogle ScholarBisegger, , Dissertation, Zurich [1907].Google Scholar
page 230 note 2 In the semi-popular report by J. A. Coward, “On researches into some of the chemical changes involved in Hard-Cheese Production,” p. 16, we find the interesting statement: “Water extracts from cheese (six months old) can readily enough be shown to contain crystalline bodies and leucin and tyrosin are easily detectable.”
page 230 note 3 M. Nierenstein, Report on the Swiss Institutions connected with the Milk Industry, etc. (Chemical Department, University of Bristol, 1909).
page 230 note 4 See Emil, Fischer, Untersuchungen über Aminosäuren, Polypeptide und Proteine, p. 30 (Berlin, 1903).Google Scholar
page 231 note 1 Abderhalden, u. Funk, Zeitschr. f. physiol. Chemie, 53, 17 [1907].Google Scholar
page 231 note 2 Czapeck, , Hofmeister's Beiträge, 1, 338 [1902], 2, 657 [1904].Google Scholar
page 231 note 3 Emmerling, , Ber. d. deutsch. chem. Gesellsch. 35, 2289 [1902].CrossRefGoogle Scholar
page 231 note 4 Bisegger, , Dissertation, Zurich, pp. 24–27.Google Scholar
page 231 note 5 Highly interesting ore the results of van Slyke, and Hart, (Amer. Chem. Jour. 30, 1 [1908]) on the relation of carbon dioxide to proteolysis in the ripening of cheese, to which special reference is here made.Google Scholar
page 232 note 1 Winterstein, u. Thöni, Zeitschr. f. physiol. chemie, 36, 28 [1902].CrossRefGoogle Scholar
page 232 note 2 van Slyke, and Hart, , Amer. Chem. Jour. 29, 271 [1903].Google Scholar
page 232 note 3 M., Nierenstein, Proc. Royal Society, B. 83, p. 301 [1911].Google Scholar
page 232 note 4 Emil, Fischer, Zeitschr. f. physiol. Chemie, 33, 151 [1901].Google Scholar
page 232 note 5 Slimmer, , Ber. d. deutsch. chem. Gesellsch. 35, 400 [1902].CrossRefGoogle Scholar
page 233 note 1 See Abaerhalden's, Biochemisches Handlexicon, 4, p. 120 [1910].Google Scholar
page 233 note 2 For details see Emil, Fischer, Über Aminosäuren, Polypeptide und Proteine [Berlin, 1906]Google Scholar and Plimmer, R. H. A., The chemical constitution of Proteins, 1 [London, 1908].CrossRefGoogle Scholar
page 233 note 3 Abderhalden, and Rostoski, , Zeitschr. f. physiol. Chemie, 44, 265 [1905], 46, 125 [1905].CrossRefGoogle Scholar
page 234 note 1 Emil, Fischer, Ber. d. deutsch. chem. Gesellsch. 32, 2451 [1899].Google Scholar
page 234 note 2 Abderhalden, , Biochemische Arbeitsmethoden, 2, p. 527.Google Scholar
page 235 note 1 Slimmer, , Ber. d. deutsch. chem. Gesellsch. 35, 400 [1902].CrossRefGoogle Scholar
page 235 note 2 Emil Fischer and Warburg, ibid. 38, 3997 [1905].
page 235 note 3 Abderhalden, , Handbuch d. biochemischen Arbeitsmethoden, 2, p. 493.Google Scholar
page 235 note 4 Abderhalden, u. Teruuchi, Zeitschr. f. physiol. Chemie, 45, 473 [1905].Google Scholar
page 235 note 5 The M.P. for tyrosin is given by Erlenmeyer, und Lippe, (Annal. d. Chemie, 219, 170), 290—295°,Google Scholar and by Emil, Fischer (Ber. d. deutsch. chem. Gesellsch. 32, 3638 [1900]), 310—314°.Google Scholar The M.P. for the benzoyl-derivative by Erlenmeyer, und Harsley, (Annal. d. Chemie, 307, 141) 182°, by Emil Fischer (l.c.) 191—193°.Google Scholar
page 235 note 6 Steudel in Abderhalden's Handbuch der biochemischen Arbeitsmethoden, 2, p. 498.Google Scholar
page 236 note 1 F., Ehrlich, Ber. d. deutsch. chem. Gesellsch. 37, 1828 [1904].Google Scholar
page 237 note 1 Emil, Fischer, Zeitschr. f. physiol. Chemie, 44, 265 [1905].Google Scholar
page 239 note 1 Skita, Emil Fischer u., Zeitschr. f. physiol. Chemie, 33, 177 [1901].Google Scholar
page 240 note 1 F., Ehrlich, Ber. d. deutsch. chem. Gesellsch. 37, 1828 [1904].Google Scholar
page 241 note 1 Emil, Fischer, Zeitschr. f. physiol. Chemie, 33, 174 [1901].Google Scholar
page 241 note 2 Emil, Fischer, Ber. d. deutsch. chem. Gesellsch. 33, 2385 [1906].Google Scholar
page 241 note 3 Emil, Fischer, Zeitschr. f. physiol. Chemie, 33, 174 [1900].Google Scholar
page 242 note 1 See Weigert, Emil Fischer u., Ber. d. deutschen chem. Gesellsch. 35, 3772 [1902],Google Scholar also Clara Wildenow, ibid. 28, 3189 [1895] and Drechsel, , Zeitschr. f. physiol. Chemie, 25, 527 [1898].Google Scholar
page 243 note 1 Steudel, in , Abderhalden'sHandbuch d. biochemischen Arbeitsmethoden, 2, p. 505.Google Scholar
page 243 note 2 Knoop, , Beitrüge z. chem. Physiol. u. Pathologie, 11, 336 [1908].Google Scholar
page 243 note 3 Pauly, , Zeitschr. f. physiol. Chemie, 42, 514 [1904].CrossRefGoogle Scholar
page 243 note 4 Emil Fischer u. Suzuki, ibid. 45, 405 [1905], also Ber. d. deutsch. chem. Gesellsch 38, 4173 [1905].CrossRefGoogle Scholar
page 243 note 5 Ackermann, in Abderhalden's, Handbuch der biochemischen Arbeitsmethoden, 2, p. 1002.Google Scholar
page 243 note 6 Putresein and cadaverin have also been found in the ethereal extraot of Cheddar cheese (M., Nierenstein, Proc. Roy. Soc. B. 83, p. 304 [1911]).Google Scholar
- 1
- Cited by