Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T05:45:13.377Z Has data issue: false hasContentIssue false

The contribution of the gibberellin-insensitive semi-dwarfing (Rht) genes to genetic variation in wheat seedling growth in response to osmotic stress

Published online by Cambridge University Press:  23 November 2007

S. LANDJEVA*
Affiliation:
Institute of Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
V. KORZUN
Affiliation:
Lochow-Petkus GmbH, PF 1197, D-29296 Bergen, Germany
E. STOIMENOVA
Affiliation:
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
B. TRUBERG
Affiliation:
KWS AG, Grimsehlstr. 31, 37574 Einbeck, Germany
G. GANEVA
Affiliation:
Institute of Genetics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
A. BÖRNER
Affiliation:
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The effects of various gibberellin-insensitive semi-dwarfing (Rht) alleles and background genotypes on the growth response of wheat seedlings to simulated low water potential were investigated. Four sets of near-isogenic lines, each consisting of six members (Rht-B1a+Rht-D1a (rht), Rht-B1b, Rht-B1c, Rht-D1b, Rht-B1b+Rht-D1b and Rht-B1c+Rht-D1b), and one set of five members (rht, Rht-B1b, Rht-B1c, Rht-B1d and Rht-D1b) were germinated in the presence of polyethylene glycol (PEG). The growth responses were assessed by measuring the lengths of the longest root, coleoptile and longest leaf (shoot) and calculating the root length:shoot length ratio and a tolerance index (TI). Seedling growth was significantly affected by the allelic status at the Rht loci, background genes and the water potential. The PEG treatment had major effects on root and shoot growth. Coleoptile growth was mainly affected by the Rht alleles. There were significant interactions of the Rht allele and variety on the growth response to low water potential. Genotypes with longer roots, coleoptiles and shoots when grown in water, as determined by the Rht allelic status (rht, Rht-B1b and Rht-D1b) and varietal background, had the highest TI and maintained this advantage under stress, while genotypes with smaller seedlings (Rht-B1c and Rht-B1c+Rht-D1b) when grown in water were more strongly affected.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. Z., Stuchbury, T. & Naylor, R. E. L. (2006). Early identification of salt tolerant genotypes of rice (Oryza sativa L.) using controlled deterioration. Experimental Agriculture 42, 6577.CrossRefGoogle Scholar
Alexandrov, V., Schneider, M., Koleva, E. & Moisselin, J.-M. (2004). Climate variability and change in Bulgaria during the 20th century. Theoretical and Applied Climatology 79, 133149.CrossRefGoogle Scholar
Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24, 13371344.CrossRefGoogle Scholar
Ali, M. G., Naylor, R. E. L. & Matthews, S. (2006). Distinguishing the effects of genotype and seed physiological age on low temperature tolerance of rice (Oryza sativa L.). Experimental Agriculture 42, 337349.CrossRefGoogle Scholar
Almansouri, M., Kinet, J.-M. & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231, 243254.CrossRefGoogle Scholar
Bakalova, S., Nikolova, A. & Nedeva, D. (2004). Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulgarian Journal of Plant Physiology 30, 6477.Google Scholar
Bartels, D. & Souer, E. (2003). Molecular responses of higher plants to dehydration. In Plant Responses to Abiotic Stress (Eds Hirt, H. & Shinozaki, K.), pp. 937. Series: Topics in Current Genetics, vol. 4. Heidelberg, Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Bewley, J. D. (1997). Seed germination and dormancy. The Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Blum, A. & Sullivan, C. Y. (1997). The effect of plant size on wheat response to agents of drought stress. I. Root drying. Australian Journal of Plant Physiology 24, 3541.Google Scholar
Blum, A., Sinmena, B. & Ziv, O. (1980). An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica 29, 727736.CrossRefGoogle Scholar
Blum, A., Sullivan, C. Y. & Nguyen, H. T. (1997). The effect of plant size on wheat response to agents of drought stress. II. Water deficit, heat and ABA. Australian Journal of Plant Physiology 24, 4348.Google Scholar
Börner, A., Worland, A. J., Plaschke, J., Schumann, E. & Law, C. N. (1993). Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in Middle Europe. Plant Breeding 111, 204216.CrossRefGoogle Scholar
Botwright, T., Rebetzke, G., Condon, T. & Richards, R. (2001). The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings. Australian Journal of Plant Physiology 28, 417423.Google Scholar
Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., Mastrangelo, A. M., Pecchioni, N. & Stanca, A. M. (2002). Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology 48, 649665.CrossRefGoogle Scholar
Chebotar, S. V., Korzun, V. & Sivolap, Y. M. (2001). Allele distribution at locus WMS261 marking the dwarfing gene Rht8 in common wheat cultivars of Southern Ukraine. Russian Journal of Genetics 37, 894898.Google Scholar
Clark, L. J., Gowing, D. J. G., Lark, R. M., Leeds-Harrison, P. B., Miller, A. J., Wells, D. M., Whalley, W. R. & Whitmore, A. P. (2005). Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. The Journal of Agricultural Science, Cambridge 143, 347358.CrossRefGoogle Scholar
Ellis, M. H., Rebetzke, G. J., Chandler, P., Bonnett, D., Spielmeyer, W. & Richards, R. A. (2004). The effect of different height reducing genes on the early growth of wheat. Functional Plant Biology 31, 583589.CrossRefGoogle ScholarPubMed
Evans, L. T. (1998). Feeding the Ten Billion. Plant and Population Growth. Cambridge, UK: Cambridge University Press.Google Scholar
Farshadfar, E., Köszegi, B., Tischner, T. & Sutka, J. (1995). Substitution analysis of drought tolerance in wheat (Triticum aestivum L.). Plant Breeding 114, 542544.CrossRefGoogle Scholar
Flintham, J. E. & Gale, M. D. (1982). The ‘Tom Thumb’ dwarfing gene, Rht3, in wheat. I. Reduced preharvest damage to breadmaking quality. Theoretical and Applied Genetics 62, 121126.Google Scholar
Flintham, J. E. & Gale, M. D. (1983). The ‘Tom Thumb’ dwarfing gene, Rht3, in wheat. II. Effects on height, yield and grain quality. Theoretical and Applied Genetics 66, 249256.CrossRefGoogle Scholar
Flintham, J. E., Börner, A., Worland, A. J. & Gale, M. D. (1997). Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science, Cambridge 128, 1125.Google Scholar
Gale, M. D. & Gregory, R. S. (1977). A rapid method for early generation selection of dwarf genotypes in wheat. Euphytica 26, 733738.Google Scholar
Gale, M. D. & Youssefian, S. (1985). Dwarfing genes in wheat. In Progress in Plant Breeding, vol. 1 (Ed. Russell, G. E.), pp. 135. London, UK: Butterworth & Co.Google Scholar
Ganeva, G., Korzun, V., Landjeva, S., Tsenov, N. & Atanasova, M. (2005). Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica 145, 307317.CrossRefGoogle Scholar
Kerepesi, I. & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science 40, 482487.CrossRefGoogle Scholar
Keyes, G. J., Paolillo, D. J. & Sorrells, M. E. (1989). The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Annals of Botany 64, 683690.CrossRefGoogle Scholar
Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V. & Karabaliev, M. (2004). Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63, 121124.Google Scholar
Kubo, K., Jitsuyama, Y., Iwama, K., Watanabe, N., Yanagisawa, A., Elouafi, I. & Nachit, M. M. (2005). The reduced height genes do not affect the root penetration ability in wheat. Euphytica 141, 105111.Google Scholar
Landjeva, S., Neumann, K., Lohwasser, U. & Börner, A. (in pressa). Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biologia Plantarum.Google Scholar
Landjeva, S., Kartseva, T., Stoimenova, E., Ganeva, G. & Shtereva, L. (in pressb). Variability in seedling growth and biochemical response to osmotic stress among Bulgarian bread wheat cultivars. In Proceedings of the 14th Workshop of European Cereal Genetics Co-operative (Eds Börner, A. & Snape, J.), pp. 131135, 6–10 May 2007, Istanbul, Turkey.Google Scholar
Mathias, R. J. & Atkinson, E. (1988). In vitro expression of genes affecting whole plant phenotype – the effect of Rht/Gai alleles on the callus culture response of wheat (Triticum aestivum L. em. Thell). Theoretical and Applied Genetics 75, 474479.CrossRefGoogle Scholar
Matsui, T., Inanaga, S., Sugimoto, Y. & Nakata, N. (1998). Chromosomal location of genes controlling final coleoptile length in wheat using chromosome substitution lines. Wheat Information Service 87, 2226.Google Scholar
Miralles, D. J., Slafer, G. A. & Lynch, V. (1997). Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant and Soil 197, 7986.Google Scholar
Miralles, D. J., Calderini, D. F., Pomar, K. P. & D'Ambrogio, A. (1998). Dwarfing genes and cell dimensions in different organs of wheat. Journal of Experimental Botany 49, 11191127.CrossRefGoogle Scholar
Michel, B. E. & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology 51, 914916.CrossRefGoogle ScholarPubMed
O'Toole, J. C. & Bland, W. L. (1987). Genotypic variation in crop plant root systems. Advances in Agronomy 41, 91145.CrossRefGoogle Scholar
Peng, J. R., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D. & Harberd, N. P. (1999). ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256261.CrossRefGoogle ScholarPubMed
Quarrie, S. A., Stojanović, J. & Pekić, S. (1999). Improving drought resistance in small-grained cereals: a case study, progress and prospects. Plant Growth Regulation 29, 121.CrossRefGoogle Scholar
Radford, B. J. (1987). Effect of constant and fluctuating temperature regimes and seed source on the coleoptile length of tall and semidwarf wheats. Australian Journal of Experimental Agriculture 27, 113117.CrossRefGoogle Scholar
Rebetzke, G. J., Appels, R., Morrison, A. D., Richards, R. A., McDonald, G., Ellis, M. H., Spielmeyer, W. & Bonnett, D. G. (2001). Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research 52, 12211234.Google Scholar
Rebetzke, G. J., Richards, R. A., Fettel, N. A., Long, M., Condon, A. G., Forrester, R. I. & Botwright, T. L. (2007). Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research 100, 1023.CrossRefGoogle Scholar
Reynolds, M. P., Skovmand, B., Trethowan, R. M. & Pfeiffer, W. H. (2000). Evaluating a conceptual model for drought tolerance. In Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. A Strategic Planning Workshop (Eds Ribaut, J. M. & Poland, D.), pp. 4953. El Batan, Texcocco (Mexico): CIMMYT.Google Scholar
Reynolds, M. P. & Borlaug, N. E. (2006). Applying innovations and new technologies for international collaborative wheat improvement. The Journal of Agricultural Science, Cambridge 144, 95110.CrossRefGoogle Scholar
Richards, R. A. (1996) Defining selection criteria to improve yield under drought. Plant Growth Regulation 20, 157166.CrossRefGoogle Scholar
Richards, R. A., Rebetzke, G. J., Appels, R. & Condon, A. G. (2000). Physiological traits to improve the yield of rainfed wheat: can molecular genetics help. In Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. A Strategic Planning Workshop (Eds Ribaut, J. M. & Poland, D.), pp. 5458. El Batan, Texcocco (Mexico): CIMMYT.Google Scholar
Richards, R. A., Condon, A. G. & Rebetzke, G. J. (2001). Traits to improve yield in dry environments. In Application of Physiology in Wheat Breeding (Eds Reynolds, M. P., Ortiz-Monasterio, J. I. & McNab, A.), pp. 88100. Mexico D.F. (Mexico): CIMMYT.Google Scholar
Tuberosa, R., Sanguineti, M. C., Landi, P., Giuliani, M. M., Salvi, S. & Conti, S. (2002). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Molecular Biology 48, 697712.CrossRefGoogle ScholarPubMed
Whan, B. R. (1976). The emergence of semidwarf and standard wheats, and its association with coleoptile length. Australian Journal of Experimental Agriculture and Animal Husbandry 16, 411416.CrossRefGoogle Scholar
Worland, A. J. (1986). Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35, 857866.CrossRefGoogle Scholar
Worland, A., Korzun, V., Röder, M., Ganal, M. & Law, C. N. (1998). Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theoretical and Applied Genetics 96, 11101120.CrossRefGoogle Scholar
Worland, A. J., Sayers, E. J. & Korzun, V. (2001). Alleleic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica 119, 155159.CrossRefGoogle Scholar
Yordanov, I., Velikova, V. & Tsonev, T. (2003). Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology Special Issue, 187206.Google Scholar