Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T23:08:52.793Z Has data issue: false hasContentIssue false

Advances in plant disease and pest management

Published online by Cambridge University Press:  22 December 2010

J. A. LUCAS*
Affiliation:
Department of Plant Pathology and Microbiology, Centre for Sustainable Pest and Disease Management, Rothamsted Research, Harpenden, Herts AL5 3BQ, UK
*
To whom all correspondence should be addressed. Email: [email protected]

Summary

Pests and diseases impact on crop yield and quality, and also reduce resource-use efficiency. Improved crop protection strategies to prevent such damage and loss can increase production and make a substantial contribution to food security. DNA-based technologies are likely to greatly increase the speed, sensitivity and accuracy of pest and pathogen detection and diagnosis. Rapid sequencing of nucleic acids from infected plants will aid identification of novel disease agents. Biomarkers of disease or crop damage such as volatile chemicals or blends may also be used to detect pest outbreaks. Biosensors coupled to information networks will provide real-time monitoring and surveillance of crops or stored produce and hence early warning of emerging problems and new invasive species. Challenges remain in the dissemination of new technologies and information to resource poor farmers in developing countries, although the rapid extension of the internet, mobile phones and other communication networks will provide new opportunities. Defining the genetic and molecular basis of innate plant immunity has been a major advance in plant biology with the potential to identify new targets for intervention via novel chemistry or genetic modification (GM). Identification of regulatory genes, signal molecules, pathways and networks controlling induced plant defence should lead to the development of a new generation of defence modulators, delivered either as crop protection products, or via biological agents on seeds or in the root zone. There should also be opportunities to select more responsive crop genotypes, or to develop transgenic crops tailored to respond to specific chemical cues or molecular patterns diagnostic for particular biotic threats. Sequencing of the genomes of the major crop species and their wild relatives will expand enormously the known gene pool and diversity of genetic resources available for plant breeders to access. It should be possible to identify genomic regions and genes conferring more durable, quantitative resistance to pathogens. The breeding cycle will be accelerated by high-throughput phenotyping and more efficient selection of resistance traits using within-gene markers. GM approaches will facilitate pyramiding (combining) resistance genes with different specificities and modes of action, thereby reducing the risk of directional selection for virulence. Analysis of the genomes of plant pathogens and invertebrate pests is already providing new information on genes, gene families and processes involved in host colonization and pathogenicity. Comparative genomics of species with diverse host ranges, contrasting feeding habits and different pathogenic lifestyles will identify new targets for inhibiting pest attack and aid the development of novel antimicrobial drugs and pesticides. Understanding the natural ecology of pests and pathogens, such as the factors determining host location, resource exploitation and interactions with other organisms, will improve our ability to manipulate behaviour, or exploit natural enemies or other antagonists of pest species. Volatile signals, either from natural plant sources, or engineered in transgenic crops, will be more widely used to modify pest behaviour. It may also be possible to manipulate microbial communities regulating pathogen populations and activity, and thereby recruit and retain more effective biocontrol agents. Insights into the natural diversity and activity of soil and microbial populations in the zones surrounding roots and seeds will provide new information on mechanisms of suppression regulating pest species. Fully effective interventions are unlikely, due to the complexity and diversity of the soil system, but there should be progress towards integrated control regimes combining more resistant crop genotypes (either selected or GM) with targeted management of natural suppressive processes. Harnessing new technologies and knowledge to create more durable resistant crops and sustainable disease and pest management systems will require improved understanding of the factors driving pest and pathogen adaptation and evolution. There must also be an increased emphasis on translational research and delivery, and developing strategies appropriate for lower-input production systems, if the second ‘green revolution’ is to become a reality.

Type
Foresight Project on Global Food and Farming Futures
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, I. P., Glover, R. H., Monger, W. A., Mumford, R., Jackeviciene, E., Samuitiene, M. & Boonham, N. (2009). Next-generation sequencing and metagenomic analysis; a universal diagnostic tool in plant virology. Molecular Plant Pathology 10, 537545.Google Scholar
Alfano, J. R. (2009). Roadmap for future research on plant pathogen effectors. Molecular Plant Pathology 10, 805813.Google Scholar
Alfano, J. R. & Collmer, A. (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defence. Annual Review of Phytopathology 42, 385414.Google Scholar
Altenbach, D. & Robatzek, S. (2007). Pattern recognition receptors: from the cell surface to intracellular dynamics. Molecular Plant–Microbe Interactions 20, 10311039.Google Scholar
Andersen, M. R., Nielsen, M. L. & Nielsen, J. (2008). Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Molecular Systems Biology 4, 178. doi:10.1038/msb.2008.12.Google Scholar
Arocha, Y., Zerfy, T., Abebe, G., Proud, J., Hanson, J., Wilson, M., Jones, P. & Lucas, J. A. (2009). Identification of potential vectors and alternative plant hosts for the phytoplasma associated with Napier Grass Stunt Disease in Ethiopia. Journal of Phytopathology 157, 126132.Google Scholar
Arraiano, L. S., Balaam, N., Fenwick, P. M., Chapman, C., Feuerhelm, D., Howell, P., Smith, S. J., Widdowson, J. P. & Brown, J. K. M. (2009). Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat. Plant Pathology 58, 910922.CrossRefGoogle Scholar
Atkinson, H. J., Urwin, P. E. & Mcpherson, M. J. (2003). Engineering plants for nematode resistance. Annual Review of Phytopathology 41, 615639.CrossRefGoogle Scholar
Auer, C. & Frederick, R. (2009). Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends in Biotechnology 27, 644651.Google Scholar
Barker, I., Bokanga, M., Lenne, J., Otim-Nape, W. & Spence, N. (2006). Future Control of Infectious Diseases in Plants with Emphasis on Sub-Saharan Africa. Foresight Review D3.1. Infectious Diseases: Preparing for the Future. London: Department of Trade and Industry.Google Scholar
Baulcombe, D. (2010). Reaping the benefits of crop research. Science 327, 761.Google Scholar
Beale, M. H., Birkett, M. A., Bruce, T. J. A., Chamberlain, K., Field, L. M., Huttly, A. K., Martin, J. L., Parker, R., Phillips, A. L., Pickett, J. A., Prosser, I. M., Shewry, P. R., Smart, L. E., Wadhams, L. J., Woodcock, C. M. & Zhang, Y. H. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. Proceedings of the National Academy of Sciences USA 103, 1050910513.Google Scholar
Beddington, J. (2010). Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society B 365, 6171.Google Scholar
Belles, X. (2010). Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annual Review of Entomology 55, 111128.Google Scholar
Berry, P. M., Kindred, D. R. & Paveley, N. D. (2008). Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology 57, 10001008.Google Scholar
Bhullar, N. K., Street, K., Mackay, M., Yahiaoui, N. & Keller, B. (2009). Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences USA 106, 95199524.Google Scholar
Bird, D. M., Williamson, V. M., Abad, P., Mccarter, J., Danchin, E. G. J., Castagnone-Sereno, P. & Opperman, C. H. (2009). The genomes of root-knot nematodes. Annual Review of Phytopathology 47, 333351.CrossRefGoogle Scholar
Birkett, M. A. & Pickett, J. A. (2006). Interrogation of Signals/ Biomarkers. Foresight Project. State of Science Review S8. Infectious Diseases: Preparing for the Future. London: Department of Trade and Industry. Available online at: http://www.foresight.gov.uk (verified 7 October 2010).Google Scholar
Boonham, N., Glover, R., Tomlinson, J. & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. European Journal of Plant Pathology 121, 355363.Google Scholar
Borges, A. A., Borges-Pérez, A. & Fernandez-Falcon, M. (2004). Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection 23, 12451247.Google Scholar
Borneman, J. & Ole Becker, J. (2007). Identifying micro-organisms involved in specific pathogen suppression in soil. Annual Review of Phytopathology 45, 153172.Google Scholar
Botha, A. M., Swanevelder, Z. H. & Lapitan, N. L. V. (2010). Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia. Environmental Entomology 39, 12061231.Google Scholar
Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology 57, 792808.Google Scholar
Brasier, C. M., Denman, S., Brown, A. & Webber, J. (2004 a). Sudden oak death (Phytophthora ramorum) discovered on trees in Europe. Mycological Research 108, 11081110.Google Scholar
Brasier, C. M., Denman, S., Rose, J., Kirk, S. A., Hughes, K. J. D., Griffin, R. L., Lane, C. R., Inman, A. J. & Webber, J. F. (2004 b). First report of ramorum bleeding canker on Quercus falcata, caused by Phytophthora ramorum. Plant Pathology 53, 804.Google Scholar
Brown, J. K. M. (2002). Yield penalties of disease resistance in crops. Current Opinion in Plant Biology 5, 339344.Google Scholar
Bruce, T. J. A., Hooper, A. M., Ireland, L., Jones, O. T., Martin, J. L., Smart, L. E., Oakley, J. & Wadhams, L. J. (2007). Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Management Science 63, 4956.Google Scholar
Carlson, J. R. (2001). Functional expression of a Drosophila odor receptor. Proceedings of the National Academy of Sciences USA 98, 89368937.Google Scholar
Cohen, Y. R. (2002). Beta-aminobutyric acid-induced resistance against plant pathogens. Plant Disease 86, 448457.Google Scholar
Collinge, D. B., Lund, O. S. & Thordal-Christensen, H. (2008). What are the prospects for genetically engineered, disease resistant plants? European Journal of Plant Pathology 121, 217231.Google Scholar
Conrath, U. (2009). Priming of induced plant defense responses. Advances in Botanical Research 51, 361395.Google Scholar
Cook, S. M., Khan, Z. R. & Pickett, J. A. (2007). The use of Push-Pull strategies in integrated pest management. Annual Review of Entomology 52, 375400.Google Scholar
Cools, H. J., Fraaije, B. A., Kim, S. H. & Lucas, J. A. (2006). Impact of changes in the target P450 CYP51 enzyme associated with altered triazole sensitivity in fungal pathogens of cereal crops. Biochemical Society Transactions 34, 12191222.Google Scholar
Cools, H. J., Parker, J. E., Kelly, D. E., Lucas, J. A., Fraaije, B. A. & Kelly, S. L. (2010). Heterologous expression of mutated eburicol 14 alpha-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Applied and Environmental Microbiology 76, 28662872.Google Scholar
Copping, L. G. (2009). The Manual of Biocontrol Agents. Alton, UK: British Crop Protection Council.Google Scholar
Copping, L. G. & Menn, J. J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science 56, 651676.Google Scholar
Crute, I. R. (2003). Increased crop productivity from renewable inputs – a scientific challenge for the 21st century. In BCPC International Congress Crop Science and Technology. Proceedings of an International Congress held at the SECC, Glasgow, Scotland, UK, 10–12 November 2003, pp. 314. Alton, UK: BCPC.Google Scholar
Cuomo, C. A., Geuldener, U., Xu, J. R.Trail, F., Turgeon, B. G., Di Pietro, A., Walton, J. D., Ma, L. J., Baker, S. E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S., Chang, Y. L., Decaprio, D., Galr, L. R., Gnerre, S., Goswami, R. S., Hammond-Kosack, K. E., Harris, L. J., Hilburn, K., Kennel, J. C., Kroken, S., Magnuson, J. K., Mannhaupt, G., Mauceli, E., Mewes, H. W., Mitterbauer, R., Muehlbauer, G., Munsterkotter, M., Nelson, D., O'Donnell, K., Ouellet, T., Qi, W. H., Quesneville, H., Roncero, M. I. G., Seong, K. Y., Tetko, I. V., Urban, M., Waalwijk, C., Ward, T. J., Yao, J. Q., Birren, B. W. & Kistler, H. C. (2007). The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317, 14001402.Google Scholar
D'Allesandro, M., Hiltpold, I., Von Merey, G. & Turlings, T. C. J. (2009). Prospects for exploiting herbivore-induced plant volatiles to enhance biological control in maize. In Proceedings of the 3rd International Symposium on Biological Control of Arthropods, Christchurch, New Zealand, February 8–13, 2009 (Eds Mason, P. G., Gillespie, D. R. & Vincent, C.), pp. 433443. Washington, DC: USDA Forest Service.Google Scholar
De Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E., Ratcliffe, N. M. & Spenser-Phillips, P. T. N. (2000). The development of a sensor system for the early detection of soft rot in stored potato tubers. Measurement Science and Technology 11, 16851691.Google Scholar
De Vleesschauwer, D. & Höfte, M. (2009). Rhizobacteria-Induced systemic resistance. Advances in Botanical Research 51, 223281.Google Scholar
Degenhardt, J., Hiltpold, I., Kollner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R. & Turlings, T. C. J. (2009). Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences USA 103, 1321313218.Google Scholar
Dinsdale, E. A., Edwards, R. A., Hall, D., Angly, F., Breitbart, M., Brulc, J. M., Furlan, M., Desnues, C., Haynes, M., Li, L., McDaniel, L., Moran, M. A., Nelson, K. E., Nilsson, C., Olson, R., Paul, J., Rodiguez Brito, B., Ruan, Y., Swan, B. K., Stevens, R., Valentine, D. L., Thurber, R. V., Wegley, L., White, B. A. & Rohwer, F. (2008). Functional metagenomic profiling of nine biomes. Nature 452, 629633.Google Scholar
Dixon, S. J. & Stockwell, B. R. (2009). Identifying druggable disease-modifying gene products. Current Opinion in Chemical Biology 13, 549555.Google Scholar
FAO (2009). Post-harvest Losses Aggravate Hunger: Improved Technology and Training Show Success in Reducing Losses. News item of 2 November 2009. Rome: FAO. Available online at: www.fao.org/news/story/0/item/36844/icode/en/ (verified 22 October 2010).Google Scholar
Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., Knauf, V. C., Lobell, D., Mazur, B. J., Molden, D., Reynolds, M. P., Ronald, P. C., Rosegrant, M. W., Sanchez, P. A., Vonshak, A. & Zhu, J-K. (2010). Radically rethinking agriculture for the 21st century. Science 327, 833834.Google Scholar
Fenton, B., Margaritopoulos, J. T., Malloch, G. L. & Foster, S. P. (2010). Micro-evolutionary change in relation to insecticide resistance in the peach-potato aphid, Myzus persicae. Ecological Entomology 1 (Suppl. 35), 131146.Google Scholar
Freeman, J. & Ward, E. (2004). Gaeumannomyces graminis, the take-all fungus and its relatives. Molecular Plant Pathology 5, 235252.Google Scholar
Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R. & Ryals, J. (2001). NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Molecular Plant–Microbe Interactions 14, 11141124.Google Scholar
Fuller, V. L., Lilley, C. J. & Urwin, P. E. (2008). Nematode resistance. New Phytologist 180, 2744.Google Scholar
Gilligan, C. A. & Van Den Bosch, F. (2008). Epidemiological models for invasion and persistence of pathogens. Annual Review of Phytopathology 46, 385418.Google Scholar
Gisi, U., Sierotzki, H., Cook, A. & McCaffery, A. (2002). Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science 58, 859867.Google Scholar
Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43, 205227.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. & Toulmin, C. (2010). Food Security: the challenge of feeding 9 billion people. Science 327, 812818.Google Scholar
Goellner, K. & Conrath, U. (2008). Priming: it's all the world to induced disease resistance. European Journal of Plant Pathology 121, 233242.Google Scholar
Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H. & Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell 8, 629643.Google Scholar
Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J. & Bohn, M. O. (2009). Adaptation and invasiveness of Western Corn Rootworm: intensifying research on a worsening pest. Annual Review of Entomology 54, 303321.Google Scholar
Grimmelikhuijzen, C. J. P., Cazzamali, G., Williamson, M. & Hauser, F. (2007). The promise of insect genomics. Pest Management Science 63, 413416.Google Scholar
Haas, B.J., Kamoun, S., Zody, M.C., Jiang, R.H.Y., Handsaker, R.E., Cano, L.M., Grabherr, M., Kodira, C.D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T.O., Ah-Fong, A.M.V., Alvarado, L., Anderson, V.L., Armstrong, M.R., Avrova, A., Baxter, L., Beynon, J., Boevink, P.C., Bollmann, S.R., Bos, J.I.B., Bulone, V., Cai, G., Cakir, C., Carrington, J.C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M.A., Fugelstad, J., Gilroy, E.M., Gnerre, S., Green, P.J., Grenville-Briggs, L.J., Griffith, J., Grünwald, N.J., Horn, K., Horner, N.R., Hu, C.-H., Huitema, E., Jeong, D.-H., Jones, A.M.E., Jones, J.D.G., Jones, R.W., Karlsson, E.K., Kunjeti, S.G., Lamour, K., Liu, Z., Ma, L.J., MacLean, D., Chibucos, M.C., McDonald, H., McWalters, J., Meijer, H.J.G., Morgan, W., Morris, P.F., Munro, C.A., O'Neill, K., Ospina-Giraldo, M., Pinzón, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D.C., Schumann, U.D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D.J., Sykes, S., Thines, M., van de Vondervoort, P.J.I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B.C., van West, P., Ristaino, J., Govers, F., Birch, P.R.J., Whisson, S.C., Judelson, H.S. & Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393398.Google Scholar
Hammerschmidt, R. (2009). Systemic acquired resistance. Advances in Botanical Research 51, 173222.Google Scholar
Hammond-Kosack, K. E. & Parker, J. E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinions in Biotechnology 14, 177193.Google Scholar
Harwood, J. D., Phillips, S. W., Lello, J., Sunderland, K. D., Glen, D. M., Bruford, M. W., Harper, G. L. & Symondson, W. O. C. (2009). Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biological Control 51, 499506.Google Scholar
Hassanali, A., Herren, H., Khan, Z. R., Pickett, J. A. & Woodcock, C. M. (2008). Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 611621.Google Scholar
Heil, M., Hilpert, A., Kaiser, W. & Linsenmair, K. E. (2000). Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology 88, 645654.Google Scholar
Herrgård, M.J., Swainston, N., Dobson, P., Dunn, W.B., Arga, K.Y., Arvas, M., Blüthgen, N., Borger, S., Costenoble, R., Heinemann, M., Hucka, M., Le Novère, N., Li, P., Liebermeister, W., Mo, M.L., Oliveira, A.P., Petranovic, D., Pettifer, S., Simeonidis, E., Smallbone, K., Spasić, I., Weichart, D., Brent, R., Broomhead, D.S., Westerhoff, H.V., Kirdar, B., Penttilä, M., Klipp, E., Palsson, B.Ø., Sauer, U., Oliver, S.G., Mendes, P., Nielsen, J. & Kell, D.B. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology 26, 11551160.Google Scholar
Hofinger, B. J., Jing, H-C., Hammond-Kosack, K. E. & Kanyuka, K. (2009). High resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics 119, 851865.Google Scholar
Hooper, A. M., Dufour, S., Willaert, S., Pouvreau, S. & Pickett, J. A. (2007). Synthesis of (2S, 7S)-dibutyroxynonane, the sex pheromone of the orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera:Cecidomyiidae), by diasteroselective silicon-tethered ring-closing metathesis. Tetrahedron Letters 48, 59915994.Google Scholar
Hooper, A. M., Hassanali, A., Chamberlain, K., Khan, Z. & Pickett, J. A. (2009). New genetic opportunities from legume intercrops for controlling Striga spp. parasitic weeds. Pest Management Science 65, 546552.Google Scholar
Huang, Y. J., Balesdent, M. H., Li, Z.-Q., Evans, N., Rouxell, T. & Fitt, B. D. L. (2010). Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). European Journal of Plant Pathology 126, 279291.Google Scholar
Huang, Y.-J., Li, Z-Q., Evans, N., Rouxel, T., Fitt, B. D. L. & Balesdent, M-H. (2006). Fitness cost associated with loss of the AvrLm4 avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). European Journal of Plant Pathology 114, 7789.Google Scholar
Jones, J. D. G. & Dangl, J. L. (2006). The plant immune system. Nature 444, 323329.Google Scholar
Jones, J. T., Kumar, A., Pylypenko, L. A., Thirugnanasambandam, A., Castelli, L., Chapman, S., Cock, P. J. A., Grenier, E., Lilley, C. J., Phillips, M. S. & Blok, V. C. (2009). Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology 10, 815828.Google Scholar
Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic Oomycetes. Annual Review of Phytopathology 44, 4160.Google Scholar
Khan, Z. R., Amudavi, D. M., Midega, C. A. O., Wanyama, J. M. & Pickett, J. A. (2008 a). Farmers’ perceptions of a ‘push-pull’ technology for control of cereal stemborers and Striga weed in western Kenya. Crop Protection 27, 976987.Google Scholar
Khan, Z. R., James, D. G., Midega, C. A. O. & Pickett, J. A. (2008 b). Chemical ecology and conservation biological control. Biological Control 45, 210224.Google Scholar
Kos, M., Van Loon, J. A., Dick, M. & Vet, L. E. M. (2009). Transgenic plants as vital components of integrated pest management. Trends in Biotechnology 27, 621627.Google Scholar
Lucas, J. A. (1999). Plant immunisation: from myth to SAR. Pesticide Science 55, 193196.Google Scholar
Ma, L.-J., Van Der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W.-B., Woloshuk, C., Xie, X., Xu, J.-R., Antoniw, J., Baker, S. E., Bluhm, B. H., Breakspear, A., Brown, D. W., Butchko, R. A. E., Chapman, S., Coulson, R., Coutinho, P. M., Danchin, E. G. J., Diener, A., Gale, L. R., Gardiner, D. M., Goff, S., Hammond-Kosack, K. E., Hilburn, K., Hua-Van, A., Jonkers, W., Kazan, K., Kodira, C. D., Koehrsen, M., Kumar, L., Lee, Y-H., Li, L., Manners, J. M., Miranda-Saavedra, D., Mukherjee, M., Park, G., Park, J., Park, S-Y., Proctor, R. H., Regev, A., Ruiz-Roldan, M. C., Sain, D., Sakthikumar, S., Sykes, S., Schwartz, D. C., Turgeon, B. G., Wapinski, I., Yoder, O., Young, S., Zeng, Q., Zhou, S., Galagan, J., Cuomo, C. H., Kistlerh, C. & Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367373.Google Scholar
Makandar, R., Essig, J. S., Schapaugh, M. A., Trick, H. N. & Shah, J. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant–Microbe Interactions 19, 123129.Google Scholar
Malnoy, M., Jin, Q., Borejsza-Wysocka, E. E., He, S. Y. & Aldwinckle, H. S. (2007). Overexpression of the apple MpNPR1 gene confers increased disease resistance in malus×domestica. Molecular Plant–Microbe Interactions 20, 15681580.Google Scholar
Markom, M. A., Shakaff, A. Y. M., Adom, A. H., Ahmad, N. M., Hidayat, W., Abdullah, A. H. & Fikri, N. A. (2009). Intelligent electronic nose system for basal stem rot disease detection. Computers and Electronics in Agriculture 66, 140146.CrossRefGoogle Scholar
Mchale, L., Tan, X., Koehl, P. & Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology 7, 212·1212·11.Google Scholar
Miller, S. A., Beed, F. D. & Harmon, C. L. (2009). Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology 47, 1538.Google Scholar
Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-Reichhart, D. & Ausubel, F. M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973990.Google Scholar
Milus, E. A., Kristensen, K. & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing Stripe Rust of wheat. Phytopathology 99, 8994.Google Scholar
Nallur, G., Luo, C. H., Fang, L. H., Cooley, S., Dave, V., Lambert, J., Kukanskis, K., Kingsmore, S., Lasken, R. & Schweitzer, B. (2001). Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research 29, e118.Google Scholar
Nauen, R. & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology 58, 200215.Google Scholar
Nayak, M., Kotian, A., Marathe, S. & Chakravortty, D. (2009). Detection of microorganisms using biosensors-A smarter way towards detection techniques. Biosensors and Bioelectronics 25, 661667.CrossRefGoogle ScholarPubMed
Nielson, K. M. (2003). Transgenic organisms – time for conceptual diversification. Nature Biotechnology 21, 227228.Google Scholar
Nurnberger, T. & Kemmerling, B. (2009). PAMP-triggered basal immunity in plants. Advances in Botanical Research 51, 138.CrossRefGoogle Scholar
Oberhardt, M. A., Palsson, B. O. & Papin, J. A. (2009). Applications of genome-scale metabolic reconstructions. Molecular Systems Biology 5, 320. doi:10.1038/msb.2009.77.Google Scholar
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, Cambridge 144, 3143.Google Scholar
Oostendorp, M., Kunz, W., Dietrich, B. & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology 107, 1928.Google Scholar
Pare, P. W. & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology 121, 325331.Google Scholar
Parnell, S., Gottwald, T. R., Van Den Bosch, F. & Gilligan, C. A. (2009). Optimal strategies for the eradication of Asiatic Citrus Canker in heterogeneous host landscapes. Phytopathology 99, 13701376.Google Scholar
Pavan, S., Jacobsen, E., Visser, R. G. F. & Bai, Y. (2010). Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25, 112.Google Scholar
Perovic, D., Forster, J., Devaux, P., Hariri, D., Guilleroux, M., Kanyuka, K., Lyons, R., Weyen, J., Feuerhelm, D., Kastirr, U., Sourdille, P., Röder, M. & Ordon, F. (2009). Mapping and diagnostic marker development for soil-borne cereal mosaic virus resistance in bread wheat. Molecular Breeding 23, 641653.Google Scholar
Pink, D., Bailey, L., McClement, S., Hand, P., Mathas, E., Buchanan-Wollaston, V., Astley, D., King, G. & Teakle, G. (2008). Doubled haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164, 509514.Google Scholar
Puinean, A. M., Foster, S. P., Oliphant, L., Denholm, I., Field, L. M., Millar, N. S., Williamson, M. S. & Bass, C. (2010). Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics 6, e1000999. doi:10.1371/journal.pgen.1000999.Google Scholar
Quilis, J., Peñas, G., Messeguer, J., Brugidou, C. & San Segundo, B. (2008). The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitvity to abiotic stresses in transgenic rice. Molecular Plant–Microbe Interactions 21, 12151231.Google Scholar
Robaglia, C. & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science 11, 4045.Google Scholar
Rosi, N. L. & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews 105, 15471562.Google Scholar
Rosso, M. N., Jones, J. T. & Abad, P. (2009). RNAi and functional genomics in plant parasitic nematodes. Annual Review of Phytopathology 47, 207232.CrossRefGoogle Scholar
Roy, H. E., Brodie, E. L., Chandler, D., Goettel, M. S., Pell, J. K., Wajnberg, E. & Vega, F. E. (2010). Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. Biocontrol 55, 16.Google Scholar
Royal Society (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. RS Policy Document 11/09. London: Royal Society.Google Scholar
Ruiz-Garcia, L., Lunadei, L., Barreiro, P. & Robla, I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9, 47284750.Google Scholar
Ryan, P. R., Dessaux, Y., Thomashow, L. S. & Weller, D. M. (2009). Rhizosphere engineering and management for sustainable agriculture. Plant and Soil 321, 363383.Google Scholar
Sanchez-Gracia, A., Vieira, F. G. & Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity 103, 208216.CrossRefGoogle Scholar
Scherkenbeck, J. & Zdobinsky, T. (2009). Insect neuropeptides: structures, chemical modifications and potential for insect control. Bioorganic and Medicinal Chemistry 17, 40714084.Google Scholar
Schnee, C., Köllner, T. G., Held, M., Turlings, T. C. J., Gershenzon, J. & Degenhardt, J. (2006). The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences USA 103, 11291134.Google Scholar
Schouten, H. J., Krens, F. A. & Jacobsen, E. (2006). Do cisgenic plants warrant less stringent oversight? Nature Biotechnology 24, 753.Google Scholar
Scofield, S. R. & Nelson, R. S. (2009). Resources for virus-induced gene silencing in the grasses. Plant Physiology 149, 152158.Google Scholar
Siddiqui, I. A., Atkins, S. D. & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. Annals of Applied Biology 155, 131141.Google Scholar
Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., Herrera-Foessel, S. A. & Ward, R. W. (2008). Will stem rust destroy the world's wheat crop? Advances in Agronomy 98, 271309.Google Scholar
Singh, R. P. & Huertaespino, J. (1997). Effect of leaf rust resistance gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Science 37, 390395.Google Scholar
Smith, J. J., Waage, J., Woodhall, J. W., Bishop, S. J. & Spence, N. J. (2008). The challenge of providing plant pest diagnostic services for Africa. European Journal of Plant Pathology 121, 365375.Google Scholar
Stahl, E. A. & Bishop, J. G. (2000). Plant-pathogen arms races at the molecular level. Current Opinion in Plant Biology 3, 299304.Google Scholar
Tan, G., Gyllenhaal, C. & Soejarto, D. D. (2006). Biodiversity as a source of anticancer drugs. Current Drug Targets 7, 265277.Google Scholar
Tester, M. & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science 327, 818822.Google Scholar
Tezcan, H. & Akbudak, N. (2009). Effects of foliar application of harpin protein against Verticillium dahliae on pepper grown in greenhouse conditions. Journal of Food Agriculture and Environment 7, 529533.Google Scholar
The International Aphid Genomics Consortium (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8, e1000313. doi:10.1371/journal.pbio.1000313.Google Scholar
Tribolium Genome Sequencing Consortium (2008). The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949955.Google Scholar
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J. & Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genetics 5, 12 e1000772. doi:10.1371/journal.pgen.1000772.Google Scholar
Van Der Ent, S., Van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J. & Ton, J. (2009). Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytologist 183, 419431.Google Scholar
Van Der Goes, Van Naters W. & Carlson, J. R. (2006). Insects as chemosensors of humans and crops. Nature 444, 302307.Google Scholar
Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J. & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences USA 103, 56025607.Google Scholar
Van Verk, M. C., Gatz, C. & Linthorst, H. J. M. (2009). Transcriptional regulation of plant defence. Advances in Botanical Research 51, 397438.Google Scholar
Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C. & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant–Microbe Interactions 17, 895908.Google Scholar
Webster, B., Bruce, T., Pickett, J. & Hardie, J. (2010). Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Animal Behaviour 79, 451457.Google Scholar
Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Bloui Bankhead, S., Allende Molar, R., Bonsall, R. F., Mavrodi, D. V. & Thomashow, L. S. (2007). Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology 9, 420.Google Scholar
West, J. S., Atkins, S. D., Emberlin, J. & Fitt, B. D. L. (2008). PCR to predict risk of airborne disease. Trends in Microbiology 16, 380387.Google Scholar
West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D. & Mccartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology 41, 593614.Google Scholar
West, J. S., Bravo, C., Oberti, R., Moshou, D., Ramon, H. & McCartney, H. A. (2010). Detection of fungal diseases optically and pathogen inoculum by air sampling. In Precision Crop Protection – The Challenge and Use of Heterogeneity (Eds Oerke, E.-C., Gerhards, R., Menz, G. & Sikora, R. A.), pp. 135149. Dordrecht, The Netherlands: Springer Science.Google Scholar
Winnenburg, R., Urban, M., Beacham, A., Baldwin, T. K., Holland, S., Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K. E. & Kohler, J. (2008). PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Research 36, D572D576.Google Scholar
De Wit, P. J. G. M., Mehrabi, R., Van Den Burg, H. A. & Stergiopoulos, I. (2009). Fungal effector proteins: past, present and future. Molecular Plant Pathology 10, 735747.Google Scholar
Yi, H. S., Heil, M., Adame-Alvarez, R. M., Ballhorn, D. J. & Ryu, C. M. (2009). Airborne induction and priming of plant defences against a bacterial pathogen. Plant Physiology 151, 21522161.Google Scholar
Zhou, J.-J., He, X.-L., Pickett, J. A. & Field, L. M. (2008). Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Molecular Biology 17, 147163.Google Scholar