Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T18:44:55.472Z Has data issue: false hasContentIssue false

The use of the in vitro fermentation technique to estimate the digestible energy content of some Egyptian forages II. The in vitro production of total volatile fatty acids and organic acids as criteria of energy content

Published online by Cambridge University Press:  27 March 2009

K. El-Shazly
Affiliation:
Faculty of Agriculture, Alexandria University, Egypt
A. R. Abou Akkada
Affiliation:
Faculty of Agriculture, Alexandria University, Egypt
M. M. A. Naga
Affiliation:
Faculty of Agriculture, Alexandria University, Egypt

Extract

1. Four in vitro fermentation experiments, in duplicate, were carried out over 24 hr. periods, to estimate the production of v.f.a. and o.a from forages.

2. A new technique for determining the total organic acids produced in the rumen is described.

3. The o.a. produced in the earlier part of the fermentation are considerably higher than the v.f.a. but the difference then diminishes. There is practically no difference in the amounts produced after 24 hr.

4. Highly significant correlations were found between the in vitro production of v.f.a. or o.a. and d.e./kg. d.m., for all the roughages tested. Nonlegumes gave a more highly significant correlation than legumes.

5. Regression equations show that o.a. or v.f.a. were more accurate than in vitro cellulose digestion for predicting the d.e./kg. d.m. of non-legume forages. It is concluded that V.F.A. production in vitro is the best criterion in this respect.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou Akkada, A. R. & Blackburn, T. H. (1963). Submitted to J. Gen. Microbiol.Google Scholar
Annison, E. F. (1954). Biochem. J. 57, 400.CrossRefGoogle Scholar
Balch, D. A. & Rowland, S. J. (1957). Brit. J. Nutr. 11, 288.CrossRefGoogle Scholar
Barker, S. B. & Summerson, W. H. (1941). J. Biol. Chem. 138, 535.CrossRefGoogle Scholar
Blackburn, T. H. & Hobson, P. N. (1962). J. Gen. Microbiol. 29, 69.CrossRefGoogle Scholar
Blaxter, C. F. (1960). Digestive physiology and nutrition of the ruminant. Proc. Nottingham Univ. 9th Easter Sch. Agric. Sci. p. 183. Ed. by Lewis, D.. London: Butterworth, 1961.Google Scholar
Bryant, M. P. (1959). Bad. Rev. 23, 125.Google Scholar
Bryant, M. P., Small, N., Bouma, C. & Chu, H. (1958). J. Bact. 76, 15.CrossRefGoogle Scholar
Bulen, W. A., Warner, J. E. & Burrell, R. C. (1952). Anal. Chem. 24, 187.CrossRefGoogle Scholar
Cuthbertson, D. P. (1958). The Advancement of Science, no. 58, p. 1.Google Scholar
Cuthbertson, D. P. & Hobson, P. N. (1961). World Review of Nutrition and Dietetics, 2, 67. Ed. by Bourne, G. H.. London: Pitman Medical Publishing Co. Ltd.Google Scholar
Doetsch, R. N., Robinson, R. Q., Brown, R. E. & Shaw, J. C. (1953). J. Dairy Sci. 36, 825.CrossRefGoogle Scholar
Elsden, S. R. (1945). J. Exp. Biol. 22, 51.CrossRefGoogle Scholar
Elsden, S. R. (1946). Biochem. J. 40, 252.CrossRefGoogle Scholar
Friedemann, T. E. (1938). J. Biol. Chem. 123, 161.CrossRefGoogle Scholar
Garton, G. A. (1960). Digestive physiology and nutrition of the ruminant. Proc. Nottingham Univ. 9th Easter Sch. Agric. Sci. pp. 140–51. Ed. by Lewis, D.. London: Butterworth, 1961.Google Scholar
Gray, F. V. & Pilgrim, A. F. (1952). J. Exp. Biol. 29, 54.CrossRefGoogle Scholar
Gutierrez, J. (1955). Biochem. J. 60, 516.CrossRefGoogle Scholar
Heald, P. J. & Oxford, A. E. (1953). Biochem. J. 53, 506.CrossRefGoogle Scholar
Hobson, P. N. & Mann, S. O. (1961). J. Gen. Microbiol. 25, 227.CrossRefGoogle Scholar
Howard, B. H. (1959). Proc. Nutr. Soc. 18, 103.CrossRefGoogle Scholar
Hueter, F. G., Shaw, J. C. & Doetsch, R. N. (1956). J. Dairy Sci. 39, 1430.CrossRefGoogle Scholar
Johns, A. T. (1951). J. Gen. Microbiol. 5, 326.CrossRefGoogle Scholar
Ladd, J. N. (1959). Biochem. J. 71, 16.CrossRefGoogle Scholar
Leffel, E. C. (1962). Proceedings of Maryland Nutrition Conference for Feed Manufacturers, Maryland, pp. 38.Google Scholar
Lindsay, D. B. (1959). Vet. Rev. and Annot. 5, 103.Google Scholar
Linke, F. G. (1952). M.S. Thesis, The Ohio State University, Columbus, Ohio.Google Scholar
Marston, M. R. (1948). Biochem. J. 42, 564.CrossRefGoogle Scholar
Naga, M. M. A. & el-Shazly, K. (1963). J. Agric. Sci. 61, 73.CrossRefGoogle Scholar
Pazur, J. H., Shney, E. W. & Georgi, C. E. (1958). Arch. Biochem. Biophys. 77, 387.CrossRefGoogle Scholar
Phillipson, A. T. (1952). Brit. J. Nutr. 6, 190.CrossRefGoogle Scholar
Phillipson, A. T. & Cuthbertson, D. P. (1956). Modern concepts of rumen digestion and metabolism, 7th Int. Animal Husbandry, Madrid, p. 1.Google Scholar
el-Shazly, K. (1952). Biochem. J. 51, 647.CrossRefGoogle Scholar
Supesteijn, A. K. & Elsden, S. R. (1952). Biochem. J. 52, 41.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Staufer, J. F. (1957). Manometric Techniques, 3rd ed.Minneapolis: Burgess Publishing Co.Google Scholar
Warner, A. C. I. (1956). J. Gen. Microbiol. 14, 733.CrossRefGoogle Scholar