Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:10:03.503Z Has data issue: false hasContentIssue false

Sweating in cattle. I. Cutaneous evaporative losses in calves and its relationship with respiratory evaporative loss and skin and rectal temperatures

Published online by Cambridge University Press:  27 March 2009

G. C. Taneja
Affiliation:
School of Physiology, University of Queensland, Brisbane and College of Veterinary Science and Animal Husbandry, Mhow (M.P.), India

Extract

Three calves (Australian Illawara Shorthorn, Shorthorn and Zebu × Australian Illawara Shorthorn) were exposed to different combinations of wet- and dry-bulb temperatures in a psychrometric chamber at the Physiology Department of the University of Queensland. These animals were 2–3 months old when first exposed to heat.

Measurements were made on these animals for cutaneous and respiratory water losses, and skin and rectal temperatures.

Cutaneous water losses in all the animals studied increased with increases in air temperature. Comparing these results with those on men with congenital absence of sweat glands exposed to high air temperature below the sweat point, suggests that the cutaneous evaporative losses in cattle are more than those that can be accounted for by diffusionmoisture alone.

Increase in cutaneous evaporation under hot conditions is accompanied by increase in skin and rectal temperatures. In the Zebu cross, however, the skin temperature did not rise with rise in air temperature.

Keeping the humidity constant, rise in dry-bulb temperature caused increase in respiratory water loss. On the other hand, rising humidity at a constant dry-bulb temperature resulted in decrease in respiratory evaporation. Respiratory evaporative loss was, therefore, greater in hot-dry than in hot-wet conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brody, S. (1945). Biogenetics and Growth. New York: Reinbold Publishing Corporation.Google Scholar
Burch, G. E. & Windsor, T. (1944). Arch. Intern. Med. 74, 437 (quoted by Taylor & Buettner, 1953).CrossRefGoogle Scholar
Carter, H. B. & Dowling, D. F. (1954). Aust. J. Agric. Res. 5, 745.CrossRefGoogle Scholar
Dempsey, M. (1946). Nature, Lond., 157, 513.CrossRefGoogle Scholar
Dowling, D. F. (1955). Aust. J. Agric. Res. 6, 645.CrossRefGoogle Scholar
Ellenberger, W. (1906). Handbuch der vergleichenden mikroskopischen Anatomie der Haustier, pp. 1125 (quoted by Findlay & Yang, 1950). Berlin: Parey.Google Scholar
Findlay, J. D. (1953). Brit. Agric. Bull. no. 8, 212.Google Scholar
Findlay, J. D. & Yang, S. H. (1950). J. Agric. Sci. 40, 126.CrossRefGoogle Scholar
Gurlt, (1835). Vergleichende Untersuchungen über die Haut des Menschen und der Haustiere besonders in Beziehung auf die Absonderungsorgane des Hauttalges und des Schweisses. Berlin (quoted by Findlay & Yang, 1950)Google Scholar
Kelly, C. F. & Ittner, N. R. (1948). Agric. Engng. 29, 239.Google Scholar
Kelley, R. B. (1932). Bull.Goun.Sci.Industr.Res.Aust. no. 27.Google Scholar
Kibler, H. H. & Brody, S. (1950). Res. Bull. Mo. Agric. Exp. Sta. no. 461.Google Scholar
Kibler, H. H. & Brody, S. (1951). Res. Bull. Mo. Agric. Exp. Sta. no. 473.Google Scholar
Kibler, H. H. & Brody, S. (1953). Res. Bull. Mo. Agric. Exp. Sta. no. 522.Google Scholar
Klemm, G. H. & Robinson, K. W. (1955). Aust. J. Agric. Res. 6, 350.CrossRefGoogle Scholar
Knapp, B. J. & Robinson, K. W. (1954). Aust. J. Agric. Res. 5, 568.CrossRefGoogle Scholar
Kuno, Y. (1934). Physiology of Human Perspiration. (J. and A. Churchill Ltd.).Google Scholar
Lang, N. A. (1946). Hand Book of Chemistry. Ohio: Handbook Publishers, Inc.Google Scholar
Loewy, A. & Weshselmann, W. (1911). Arch. Path. Anat. 206, 79 (quoted by Kuno, 1934).CrossRefGoogle Scholar
Macpherson, R. K. & Lee, D. H. K. (1946). Nat. Hlth. Med. Res. Counc. Aust. Fatigue Lab. Open Rep. no. 5 (University of Queensland).Google Scholar
McDowell, R. E., Lee, D. H. K., Fohrman, M. H. & Anderson, R. S. (1953). J. Anim. Sci. 12, 573.CrossRefGoogle Scholar
McDowell, R. E., Lee, D. H. K. & Fohrman, M. H. (1954). J. Anim. Sci. 13, 405.CrossRefGoogle Scholar
Minett, F. (1947). J. Anim. Sci. 6, 35.CrossRefGoogle Scholar
Miller, G. D., Frye, J. B. Jr., Burch, B. T. Jr., Henderson, P. J. & Rusoff, L. L. (1951). J. Anim. Sci. 10, 961.CrossRefGoogle Scholar
Muto, K. (1925). J. Jap. Soc. Vet. Sci. 4, 1 (quoted by Findlay & Yang, 1950).Google Scholar
Pinson, E. A. (1942). Amer. J. Physiol. 137, 492.CrossRefGoogle Scholar
Rhoad, A. O. (1940). Emp. J. Exp. Agric. 8, 190.Google Scholar
Richardson, H. B. (1926). J. Biol. Chem. 67, 397.CrossRefGoogle Scholar
Riek, R. F. & Lee, D. H. K. (1948 a). J. Dairy Res. 15, 219.CrossRefGoogle Scholar
Riek, R. F. & Lee, D. H. K. (1948 b). J. Dairy Res. 15, 227.CrossRefGoogle Scholar
Robinson, K. W. & Klemm, G. H. (1953). Aust. J. Agric. Res. 4, 224.CrossRefGoogle Scholar
Seath, D. M. & Miller, G. D. (1947). J. Dairy Sci. 30, 255.CrossRefGoogle Scholar
Sinah, K. C. & Minett, F. C. (1947). J. Anim. Sci. 6, 258.CrossRefGoogle Scholar
Taneja, G. C. (1956). Nature, Lond., 177, 482.CrossRefGoogle Scholar
Thompson, H. J., McCroskey, R. M. & Brody, S. (1951). Res. Bull. Mo. Agric. Exp. Sta. no. 479.Google Scholar
Trolle, D. (1937). Skand. Arch. Physiol. 76, 225 (quoted by Taylor & Buettner, 1953).CrossRefGoogle Scholar
Worstell, D. M. & Brody, S. (1953). Res. Bull. Mo. Agric. Exp. Sta. no. 515.Google Scholar
Yamane, J. & Ono, Y. (1936). Mem. Fac. Sci. Agric. Taihoku, 19, 3 (quoted by Findlay & Yang, 1950).Google Scholar