Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T00:58:23.876Z Has data issue: false hasContentIssue false

Nutritional and haemagglutination properties of several tropical seeds

Published online by Cambridge University Press:  27 March 2009

G. Grant
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK
L. J. More
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK
N. H. McKenzie
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK
P. M. Dorward
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK
W. C. Buchan
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK
L. Telek
Affiliation:
USDA ARS, Tropical Agricultural Research Station, PO Box 70, 00681, Mayaguez, Puerto Rico
A. Pusztai
Affiliation:
The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB, UK

Summary

The nutritional potential of a number of raw tropical seeds was assessed in a series of feeding trials with rats. Seed lectin reactivity was also monitored, α-amylase and trypsin inhibitory activities were determined in some of the seeds.

Abelmosclius esculentus, Chenopodium quinoa, Delonix regia, Macroptilium lathyroides, Papaver sonmiferum, Parkia biglandulosa, Sesbania arabica, Terminalia catappa, Vigna subterranea, Vigna umbellata and Vigna unguiculata seeds supported moderate rat growth. The seeds contained only low levels of essentially non-toxic lectin, moderate amounts of trypsin inhibitors and negligible quantities of a-amylase inhibitors and they have great potential as dietary protein sources for man and animals.

Artocarpus altilis, Canavalia ensiformis, Canavalia maritima, Dioclea grandiflora, Phaseolus acutifolius, Phaseolus coccineus and Phaseolus vulgaris cv. Processor, cv. Rosinha G2 and cv. Carioca 80 seeds were toxic. These seeds contained high levels of potentially toxic lectins. Other antinutritional factors may also have contributed to the high oral toxicity of some of these seeds.

Albizia adinocephala, Albizia lebbeck, Bauhinia violacea, Cassia nodosa, Cassia tora, Dioclea sclerocarpa, Entada phaseoloides, Enterolobium cyclocarpum, Leucaena leucocephala and Moringa oleifera seeds were also highly toxic but had only low levels of essentially non-toxic lectins suggesting that the toxicity was due to other anti-nutritional factors.

Bauhinia reticulata, Macrotyloma uniflorum and Tamarindus indica proteins were poorly digested and utilized. The seeds contained low levels of lectins which agglutinated only rat and cattle erythrocytes which had been pre-treated with suitable proteases. Brownea macrophylla had a similar lectin reactivity.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheeke, P. R. & Schull, L. R. (Eds) (1985). Natural Toxicants in Feeds and Poisonous Plants. Connecticut: Avi Publishing Co.Google Scholar
Coates, M. E., O'Donoghue, P. N., Payne, R. R. & Ward, J. J. (Eds) (1969). Laboratory Animal Handbook: Dietary Standards for Laboratory Rats and Mice. London: London Laboratory Animals Ltd.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). The use of automation in determining nitrogen by the Kjeldahl method with final calculations by computer. Analyst 95, 181193.CrossRefGoogle ScholarPubMed
Grant, G. (1991). Lectins. In Toxic Substances in Crop Plants (Eds D'Mello, J. P. F., Duffus, C. M. & Duffus, J. H.), pp. 4967. London: The Royal Society of Chemistry.CrossRefGoogle Scholar
Grant, G. & van Dreissche, E. (1993). Legume lectins: physiochemical and nutritional properties. In Recent Advances of Research in Antinutritional Factors in Legume Seeds (Eds van der Poel, A. F. P., Huisman, J. & Saini, H. S.), pp. 219234. Wageningen, The Netherlands: Pudoc.Google Scholar
Grant, G., More, L. J., McKenzie, N. H. & Pusztai, A. (1982). The effect of heating on the haemagglutinating activity and nutritional properties of bean (Phaseolus vulgaris) seeds. Journal of the Science of Food and Agriculture 33, 13241326.CrossRefGoogle ScholarPubMed
Grant, G., More, L. J., McKenzie, N. H., Stewart, J. C. & Putztai, A. (1983). A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. British Journal of Nutrition 50, 207214.CrossRefGoogle ScholarPubMed
Grant, G., McKenzie, N. H., Watt, W. B., Stewart, J. C., Dorward, P. M. & Pusztai, A. (1986 a). Nutritional evaluation of soya beans (Glycine max): Nitrogen balance and fractionation studies. Journal of the Science of Food and Agriculture 37, 10011010.CrossRefGoogle Scholar
Grant, G., McKenzie, N. H., Moreira, R. A. & Pusztai, A. (1986 b) Dioclea grandiflora and Dioclea sclerocarpa seeds. A nutritional study. Qualitas Plantarum Plant Foods for Human Nutrition 36, 4761.Google Scholar
Grant, G., Dorward, P. M. & Pusztai, A. (1993). Pancreatic enlargement is evident in rats fed diets containing raw soybeans (Glycine max) or cowpeas (Vigna unguiculata) for 800 days but not in those fed diets based on kidney beans (Phaseolus vulgaris) or lupinseed (Lupinus angustifolius). Journal of Nutrition 123, 22072215.CrossRefGoogle ScholarPubMed
Greibel, C. (1950). Illness caused by bean flakes and flat peas. Zeitschrift für Lebensmittel-Untersuchung und Forschung 90, 191197.Google Scholar
Gumbmann, M. R. & Friedman, M. (1987). Effect of sulfur amino acid supplementation of raw soy flour on the growth and pancreatic weights of rats. Journal of Nutrition 117, 10181023.CrossRefGoogle ScholarPubMed
Gumbmann, M. R., Spangler, W. L., Dugan, G. M., Rackis, J. J. & Liener, I. E. (1985). The USDA trypsin inhibitor study. IV. The chronic effects of soy flour and soy protein isolate on the pancreas in rats after 2 years. Qualitas Plantarum Plant Foods for Human Nutrition 35, 275314.CrossRefGoogle Scholar
Huisman, J., van der Poel, A. F. B. & Llener, I. E. (Eds) (1989). Recent Advances of Research in Antinutritional Factors in Legume Seeds. Wageningen, The Netherlands: Pudoc.Google Scholar
Kakade, M. L., Simons, N. & Liener, I. E. (1969). An evaluation of natural vs. synthetic substrates for measuring the antitryptic activity of soybean samples. Cereal Chemistry 46, 518526.Google Scholar
Korte, R. (1972). Heat resistance of phytohaemagglutinins in weaning food mixtures containing beans (Phaseolus vulgaris). Ecology of Food and Nutrition 1, 303307.CrossRefGoogle Scholar
Liener, I. E. (1986). Nutritional significance of lectins in the diet. In The Lectins (Eds. Liener, I. E., Sharon, N. & Goldstein, I. J.), pp. 527552. New York: Academic Press.CrossRefGoogle Scholar
Liener, I. E. (1989 a). Antinutritional factors in legume seeds: state of the art. In Recent Advances of Research in Antinutritional Factors in Legume Seeds (Eds Huisman, J., van der Poel, A. F. P. & Liener, I. E.), pp. 613. Wageningen, The Netherlands: Pudoc.Google Scholar
Liener, I. E. (1989 b). Control of anti-nutritional and toxic factors in oilseeds and legumes. In Food Uses of Whole Oil and Protein Seeds (Eds Lusas, E. W., Erickson, D. R. & Nip, W.-K.), pp. 344371. Champaign, Illinois, USA: American Oil Chemists’ Society.Google Scholar
Miller, D. S. & Bender, A. E. (1955). The determination of the net utilization of proteins by a shortened method. British Journal of Nutrition 9, 382388.CrossRefGoogle ScholarPubMed
Oliveira, J. T. A., Vasconcelos, I. M., Gondim, M. J. L., Cavada, B. S., Moreira, R. A., Santos, C. F. & Moreira, L. I. M. (1994). Canavalia brasiliensis seeds. Protein quality and nutritional implications of dietary lectin. Journal of the Science of Food and Agriculture 64, 417424.CrossRefGoogle Scholar
Palmer, R., McIntosh, A. & Pusztai, A. (1973). The nutritional evaluation of kidney beans (Phaseolus vulgaris): the effect on nutritional value of seed germination and changes in trypsin inhibitor content. Journal of the Science of Food and Agriculture 24, 937944.CrossRefGoogle ScholarPubMed
Piergiovanni, A. R. (1992) Effects of some experimental parameters on the activity of cowpea α-amylase inhibitors. Lebensmittel-Wissenschaft und Technologic 25, 321324.Google Scholar
Pusztai, A. (1991) Plant Lectins. Cambridge: Cambridge University Press.Google Scholar
Pusztai, A. & Palmer, R. (1977). Nutritional evaluation of kidney beans (Phaseolus vulgaris): the toxic principle. Journal of the Science of Food and Agriculture 28, 620623.CrossRefGoogle Scholar
Pusztai, A. & Watt, W. B. (1974). Isolectins of Phaseolus vulgaris: a comprehensive study of fractionation. Biochimica et Biophysica Acta 365, 5771.CrossRefGoogle ScholarPubMed
Pusztai, A., Ewen, S. W. B., Grant, G., Brown, D. S., Stewart, J. C., Peumans, W. J., van Damme, E. J. M. & Bardocz, S. (1993 a) Antinutritive effects of wheat-germ agglutinin and other N-acetylglucosamine-specific lectins. British Journal of Nutrition 70, 313321.CrossRefGoogle ScholarPubMed
Pusztai, A., Ewen, S. W. B., Yule, M. & Bardocz, S. (1993 b). Effecto de la Concanavalin A y de la lectina de Phaseolus vulgaris (PHA), sobre et metabolismo del tracto gastrointestinal y sistemico de ratas convencionales o libres de germes. In Canavalia ensiformis (L) DC. Production, Processamiento y Utilizacion en Alimentacion Animal (Eds, Leon, M. & Escobar, A.), pp. 113121. Venerzuel, Estado Tachira, San Cristobal, Talleres de Editorial Futuro CA.Google Scholar
Rackis, J. J., McGhee, J. E. & Booth, A. N. (1975). Biological threshold levels of soybean trypsin inhibitors by rat bioassay. Cereal Chemistry 52, 8592.Google Scholar
Rodhouse, J. C., Haugh, C. A., Roberts, D. & Gilbert, R. J. (1990). Red kidney bean poisoning in the UK.: an analysis of 50 suspected incidents between 1976 and 1989. Epidemiology and Infection 105, 485491CrossRefGoogle ScholarPubMed
van der Poel, A. F. P., Huisman, J. & Saini, H. S. (Eds) (1993). Recent Advances of Research in Antinutritional Factors in Legume Seeds. Wageningen, The Netherlands: Pudoc.Google Scholar
Zar, J. H. (Ed.) (1984). Biostatistical Analysis. Englewood Cliffs, New Jersey: Prentice-Hall International.Google Scholar