Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T10:11:45.307Z Has data issue: false hasContentIssue false

Effects of pre-incubation in sheep and goat saliva on in vitro rumen digestion of tanniferous browse foliage

Published online by Cambridge University Press:  01 May 2013

H. AMMAR
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain Ecole Supérieure d'Agriculture de Mograne, IRESA. Mograne-Zaghouan 1121, Tunisia
R. BODAS
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain Instituto Tecnológico Agrario de Castilla y León. Finca Zamadueñas. Ctra. Burgos, km 119. E-47071 Valladolid, Spain
J. S. GONZÁLEZ
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain
A. Z. M. SALEM
Affiliation:
Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico Department of Animal Production, Faculty of Agriculture (El-Shatby), Alexandria University, Egypt
F. J. GIRÁLDEZ
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain
S. ANDRÉS
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain
S. LÓPEZ*
Affiliation:
Instituto de Ganadería de Montaña, Universidad de León – Consejo Superior de Investigaciones Científicas, Departamento de Producción Animal, Universidad de León, E-24071 León, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A two-stage in vitro procedure was used for assessing the activity of parotid saliva to enhance rumen digestion of tanniniferous browse foliage. The procedure consisted of pre-incubation in saliva for 4 h at 39 °C followed by incubation in diluted buffered rumen fluid. Using this procedure, a study was conducted to examine the effects of pre-incubation in sheep (SS), quebracho-supplemented sheep (qSS) and goat (GS) parotid saliva or in McDougall's artificial saliva (AS, used as control) on in vitro rumen fermentation kinetics (estimated using the gas production technique) of browse foliage from six shrub species (Cytisus scoparius, Genista florida, Rosa canina, Quercus pyrenaica, Cistus laurifolius and Erica australis) collected over two seasons (spring and autumn), thus varying the in vitro digestibility (from 0·597 to 0·903) and tannin contents (from 3 to 130 g tannic acid equivalent/kg dry matter (DM)). Saliva was collected from four sheep and four goats fed alfalfa hay, and from four sheep fed the same alfalfa hay but supplemented with quebracho (rich in condensed tannins) for 60 d, through a cannula inserted in the parotid duct, and rumen fluid was always from sheep fed alfalfa hay. The extent of degradation when browse foliage was pre-incubated in qSS was similar to that observed with control AS (0·449 v. 0·452, respectively), and 8% less than the value with pre-incubation in SS (0·490). In vitro fermentation kinetics (gas production parameters) of browse foliage were not significantly enhanced with pre-incubation in qSS compared with SS, whereas in vitro digestibility and extent of degradation in the rumen were significantly reduced with qSS compared with SS. After pre-incubation in sheep and goat saliva, the extent of browse foliage degradation was significantly increased by 4–8% compared with pre-incubation in the control AS. Fermentation efficiency of browse foliage was increased (P<0·05) with pre-incubation in GS compared with SS. Sheep or goat saliva may have some activity to affect in vitro rumen fermentation of the foliage samples incubated, enhancing extent of degradation of tannin-rich browse. However, a relationship between the magnitude of this effect and the tannin content of the browse foliage could not be established, suggesting that sheep and goat saliva may not be particularly important in neutralizing tannins.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso-Díaz, M. A., Torres-Acosta, J. F. J., Sandoval-Castro, C. A. & Capetillo-Leal, C. M. (2012). Amino acid profile of the protein from whole saliva of goats and sheep and its interaction with tannic acid and tannins extracted from the fodder of tropical plants. Small Ruminant Research 103, 6974.CrossRefGoogle Scholar
Ammar, H., López, S., Bochi, O., García, R. & Ranilla, M. J. (1999). Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different maturity stages. Journal of Animal and Feed Sciences 8, 599610.CrossRefGoogle Scholar
Ammar, H., López, S., González, J. S. & Ranilla, M. J. (2004 a). Chemical composition and in vitro digestibility of some Spanish browse plant species. Journal of the Science of Food and Agriculture 84, 197204.CrossRefGoogle Scholar
Ammar, H., López, S., González, J. S. & Ranilla, M. J. (2004 b). Seasonal variations in the chemical composition and in vitro digestibility of some Spanish leguminous shrub species. Animal Feed Science and Technology 115, 327340.CrossRefGoogle Scholar
Ammar, H., López, S., González, J. S. & Ranilla, M. J. (2004 c). Comparison between analytical methods and biological assays for the assessment of tannin-related antinutritive effects in some Spanish browse species. Journal of the Science of Food and Agriculture 84, 13491356.CrossRefGoogle Scholar
Ammar, H., López, S., Andrés, S., Ranilla, M. J., Bodas, R. & González, J. S. (2008). In vitro digestibility and fermentation kinetics of some browse plants using sheep or goat ruminal fluid as the source of inoculum. Animal Feed Science and Technology 147, 90104.CrossRefGoogle Scholar
Ammar, H., López, S., Kammoun, M., Bodas, R., Giráldez, F. J. & González, J. S. (2009). Feeding quebracho tannins to sheep enhances rumen fermentative activity to degrade browse shrubs. Animal Feed Science and Technology 149, 115.CrossRefGoogle Scholar
Ammar, H., López, S., Salem, A. Z. M., Bodas, R. & González, J. S. (2011). Effect of saliva from sheep that have ingested quebracho tannins on the in vitro rumen fermentation activity to digest tannin-containing shrubs. Animal Feed Science and Technology 163, 7783.CrossRefGoogle Scholar
Austin, P. J., Suchar, L. A., Robbins, C. T. & Hagerman, A. E. (1989). Tannins-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology 15, 13351347.CrossRefGoogle ScholarPubMed
Bajec, M. R. & Pickering, G. J. (2008). Astringency: mechanisms and perception. Critical Reviews in Food Science and Nutrition 48, 858875.CrossRefGoogle ScholarPubMed
Bennick, A. (2002). Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology and Medicine 13, 184196.CrossRefGoogle ScholarPubMed
Crawley, M. J. (2005). Statistics: An Introduction Using R. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
da Costa, G., Lamy, E., Silva, F. C., Andersen, J., Baptista, E. S. & Coelho, A. V. (2008). Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins. Journal of Chemical Ecology 34, 376387.CrossRefGoogle ScholarPubMed
Dearing, M. D., Foley, W. J. & McLean, S. (2005). The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annual Review of Ecology Evolution and Systematics 36, 169189.CrossRefGoogle Scholar
Fickel, J., Goritz, F., Joest, B. A., Hildebrandt, T., Hofmann, R. R. & Breves, G. (1998). Analysis of parotid and mixed saliva in Roe deer (Capreolus capreolus L.). Journal of Comparative Physiology B: Biochemical Systemic and Environmental Physiology 168, 257264.CrossRefGoogle ScholarPubMed
France, J., Dijkstra, J., Dhanoa, M. S., López, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.CrossRefGoogle ScholarPubMed
Freeland, W. J. (1991). Plant secondary metabolites: biochemical coevolution with herbivores. In Plant Defenses against Mammalian Herbivory (Eds Palo, R. T. & Robbins, C. T.), pp. 6181. Boca Raton, FL: CRC Press.Google Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agriculture Handbook 379. Washington, DC: ARS-USDA.Google Scholar
Gordon, I. J. (2003). Browsing and grazing ruminants: are they different beasts? Forest Ecology and Management 181, 1321.CrossRefGoogle Scholar
Gordon, I. J., Perez-Barberia, F. J. & Cuartas, P. (2002). The influence of adaptation of rumen microflora on in vitro digestion of different forages by sheep and red deer. Canadian Journal of Zoology 80, 19301937.CrossRefGoogle Scholar
Hagerman, A. E. & Robbins, C. T. (1993). Specificity of tannin binding salivary proteins relative to diet selection by mammals. Canadian Journal of Zoology 71, 628633.CrossRefGoogle Scholar
Haghighat, M., Moetamed, A., Vaseghi, T. & Aminlari, M. (1996). Isoprenaline induces biosynthesis of proline-rich proteins in the salivary glands of rat but not in sheep. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 115, 165168.Google Scholar
Hofmann, R. R., Streich, W. J., Fickel, J., Hummel, J. & Clauss, M. (2008). Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. Journal of Morphology 269, 240257.CrossRefGoogle ScholarPubMed
Kay, R. N. B. (1966). The influence of saliva on digestion in ruminants. World Review of Nutrition and Dietetics 6, 292325.CrossRefGoogle ScholarPubMed
Lamy, E., da Costa, G., Silva, F. C., Potes, J., Coelho, A. V. & Baptista, E. S. (2008). Comparison of electrophoretic protein profiles from sheep and goat parotid saliva. Journal of Chemical Ecology 34, 388397.CrossRefGoogle ScholarPubMed
Lamy, E., da Costa, G., Santos, R., Silva, F. C., Potes, J., Pereira, A., Coelho, A. V. & Baptista, E. S. (2009). Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiology and Behavior 98, 393401.CrossRefGoogle ScholarPubMed
Makkar, H. P. S. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research 49, 241256.CrossRefGoogle Scholar
McArthur, C., Sanson, G. D. & Beal, A. M. (1995). Salivary proline-rich proteins in mammals-roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology 21, 663691.CrossRefGoogle ScholarPubMed
McDougall, E. I. (1948). Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.CrossRefGoogle ScholarPubMed
Narjisse, H., Elhonsali, M. A. & Olsen, J. D. (1995). Effects of oak (Quercus ilex) tannins on digestion and nitrogen balance in sheep and goats. Small Ruminant Research 18, 201206.CrossRefGoogle Scholar
Papachristou, T. G. (1997). Foraging behaviour of goats and sheep on Mediterranean kermes oak shrublands. Small Ruminant Research 24, 8593.CrossRefGoogle Scholar
Pasta, D. J. (2011). Those confounded interactions: building and interpreting a model with many potential confounders and interactions. In Proceedings of the SAS Global Forum 2011, paper 347–2011. Cary, NC: SAS. Available online at http://support.sas.com/resources/papers/proceedings11/347-2011.pdf (verified 28 February 2013).Google Scholar
Perez-Maldonado, R. A., Norton, B. W. & Kerven, G. L. (1995). Factors affecting in vitro formation of tannin protein complexes. Journal of the Science of Food and Agriculture 69, 291298.CrossRefGoogle Scholar
Provenza, F. D., Burrit, E. A., Clausen, T. P., Bryant, J. P., Reichardt, P. B. & Diestel, R. A. (1990). Conditional flavor aversion: a mechanism for goat to avoid condensed tannins in blackbrush. American Naturalist 136, 810828.CrossRefGoogle Scholar
Robbins, C. T., Spalinger, D. E. & Van Hoven, W. (1995). Adaptation of ruminants to browse and grass diets: are anatomical based browser-grazer interpretations valid? Oecologia 103, 208213.CrossRefGoogle ScholarPubMed
Rogosic, J., Estell, R. E., Ivankovic, S., Kezic, J. & Razov, J. (2008). Potential mechanisms to increase shrub intake and performance of small ruminants in mediterranean shrubby ecosystems. Small Ruminant Research 74, 115.CrossRefGoogle Scholar
Salem, A. Z. M., López, S., Ranilla, M. J. & González, J. S. (2013). Short to medium-term effects of consumption of quebracho tannins on saliva production and composition in sheep and goats. Journal of Animal Science doi: 10.2527/jas2010-3811.CrossRefGoogle ScholarPubMed
Shimada, T. (2006). Salivary proteins as a defense against dietary tannins. Journal of Chemical Ecology 32, 11491163.CrossRefGoogle ScholarPubMed
Shimada, T., Saitoh, T., Sasaki, E., Nishitani, Y. & Osawa, R. (2006). The role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. Journal of Chemical Ecology 32, 11651180.CrossRefGoogle ScholarPubMed
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics (2nd edn). New York: McGraw-Hill.Google Scholar
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., Mcallan, A. B. & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.CrossRefGoogle Scholar
Waghorn, G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production – progress and challenges. Animal Feed Science and Technology 147, 116139.CrossRefGoogle Scholar