Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T03:18:04.329Z Has data issue: false hasContentIssue false

The distribution of phosphorus in forest and savannah soils of the Gold Coast and its agricultural significance

Published online by Cambridge University Press:  27 March 2009

P. H. Nye
Affiliation:
University College of the Gold Coast
M. H. Bertheux
Affiliation:
University College of the Gold Coast

Extract

The amount of phosphorus in composite surface samples and profile samples from a range of agriculturally important soils in the forest and savannah regions of the Gold Coast has been determined. The total phosphorus in each sample has been divided into an acid-soluble, an inorganic alkali-soluble, an organic and a residual fraction. On the surface samples these fractions, together with the soil pH, organic carbon and Bray ‘quick-test’ available phosphorus, have been related to superphosphate responses in the savannah region. The following conclusions have been reached:

Surface samples

The total phosphorus in the soils is low by comparison with other parts of the world, but its distribution among the soil fractions is normal for slightly acid soils.

Soils developed over basic rocks have more total phosphorus, and a lower proportion of acid-soluble phosphorus than soils over quartzose rocks.

Forest soils have more total phosphorus and more phosphorus in each of the fractions than savannah soils.

The organic phosphorus content is closely related to the organic carbon content. The C/P ratio averages 233 in forest and 247 in savannah, and this is considerably higher than the world average. The N/P ratio of 21·6 in forest and 19·5 in savannah is similarly high.

The C/P ratio, unlike the C/N ratio, is not reduced when long-rested savannah soils are cropped.

Soluble phosphate applied in permanent fertilizer trials is found in the acid-soluble, the alkali-soluble and organic fractions. In comparison with the amounts of those fractions already present, the acidsoluble fraction increases most and the organic fraction least.

Profile samples

In thoroughly leached soils the acid-soluble phosphate decreases sharply, and the alkali-soluble inorganic phosphate rather more slowly with depth. In the forest total phosphorus is greatest in the surface, but in the savannah there is no consistent change with depth. The incompletely leached profiles differ in showing a sharp rise in the acid-soluble phosphorus and the total phosphorus in the subsoil. The level of organic phosphorus falls less than expected down the profile, and the C/P ratio, like the C/N ratio, decreases in the subsoil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida, L. A. V. & De Miranda, V. H. B. (1954). Trans. 5th Int. Congr. Soil Sci. 3, 263.Google Scholar
Auten, J. T. (1922). Soil Sci. 13, 119.CrossRefGoogle Scholar
Bertheux, M. H. (1957). To be published.Google Scholar
Birch, H. F. (1952). J. Agric. Sci. 42, 276.CrossRefGoogle Scholar
Birch, H. F. (1953). J. Agric. Sci. 43, 229, 329.CrossRefGoogle Scholar
Black, C. A. & Goring, C. A. I. (1953). Agronomy, 4, 123.Google Scholar
Bray, R. H. & Kurtz, L. T. (1945). Soil. Sci. 59, 39.CrossRefGoogle Scholar
Brito-Mutunayagam, A. P. A. & Koshy, M. M. (1952). Bull. Res. Inst. Univ. Travancore, 2 A, 63.Google Scholar
Burd, J. S. (1948). Soil Sci. 65, 227.CrossRefGoogle Scholar
de Endredy, A. S. & Montgomery, C. W. (1954). Trans. 5th Int. Congr. Soil Sci. 3, 268.Google Scholar
de Endredy, A. S. (1954). Trans. 5th Int. Congr. Soil Sci. 2, 457.Google Scholar
Dean, A., (1938). J. Agric. Sci. 28, 234.CrossRefGoogle Scholar
Deb, B. C. (1950). J. Soil Sci. 1, 212.Google Scholar
Doyne, H. C., Hartley, K. T. & Watson, W. A. (1938). 3rd W. Afr. Agric. Conf. p. 227 (Nigeria) Lagos.Google Scholar
Ghani, M. O. (1944). Indian J. Agric. Sci. 14, 261.Google Scholar
Ghani, M. O. & Aleem, S. A. (1943 a). Indian J. Agric. Sci. 13, 142.Google Scholar
Ghani, M. O. & Aleem, S. A. (1943 b). Indian J. Agric. Sci. 13, 283.Google Scholar
Ghani, M. O. & Aleem, S. A. (1943 c). Indian J. Agric. Sci. 13, 377.Google Scholar
Glentworth, R. (1954). Memoirs of the Soil Survey of Great Britain. H.M.S.O.Google Scholar
Goldschmidt, V. M. (1934). Geol. Fören. Stockh. Förh. 56, 385.Google Scholar
Goldschmidt, V. M. (1954). Geochemistry, p. 457. Oxford.Google Scholar
Greenwood, M. (1938). 3rd W. Afr. Agric. Conf. p. 101 (Gold Coast), Lagos.Google Scholar
Hardy, F. & Amoroso-Centeno, E. H. (1938). Imp. Coll. Trop. Agric. Trin. 6th Ann. Rep. Cacao Res. 1937, p. 32.Google Scholar
Junner, N. R. & James, W. T. (1947). Gold Coast Geol. Surv. Bull. no. 15.Google Scholar
Kandiah, S. (1948). Trop. Agriculturalist, 104, 17.Google Scholar
Kellogg, C. E. & Datol, F. D. (1949). I.N.E.A.C. Ser. Sci. no. 46.Google Scholar
Kitson, R. E. & Mellon, M. G. (1944). Industr. Engng Chem. (Anal, ed.), 16, 379.Google Scholar
Kittrick, J. A. & Jackson, M. L. (1956). J. Soil Sci. 7, 81.Google Scholar
Kurtz, L. T. (1953). Agronomy, 4, 59.Google Scholar
Metha, N. C. et al. (1954). Proc. Soil Sci. Soc. Amer. 18, 443.Google Scholar
Middleton, K. R. (1954). Trans. 5th Int. Congr. Soil Sci. J., 3, 218, Leopoldville.Google Scholar
Nelson, W. L., Mehlich, A. & Winters, E. (1953). Agron. J. 4, 153.Google Scholar
Nye, P. H. (1950). Trans. 4th Int. Congr. Soil Sci. 1, 246.Google Scholar
Nye, P. H. (1952). Emp. J. Exp. Agric. 20, 47.Google Scholar
Nye, P. H. (1953). Emp. J. Exp. Agric. 21, 176; 21, 262; 22, 42.Google Scholar
Nye, P. H. (1954 a). J. W. Afr. Sci. Ass. 1, 18.Google Scholar
Nye, P. H. (1954 b). Emp. J. Exp. Agric. 22, 101.Google Scholar
Nye, P. H. (1955). J. Soil. Sci. 6, 51.Google Scholar
Odynsky, W. (1936). Sci. Agric. 16, 652.Google Scholar
Owen, G. (1953). J. Rubb. Res. Inst. Malaya, 14, 121.Google Scholar
Parker, F. W. (1953). Agronomy, 4, 401.Google Scholar
Pearson, R. W. (1940).Industr. Engng Chem. (Anal, ed.), 12, 198.Google Scholar
Pearson, R. W. & Simonson, R. W. (1940). Proc. Soil Sci. Soc. Amer. 4, 162.CrossRefGoogle Scholar
Pearson, R. W., Spry, R. & Pierre, W. H. (1940). J. Amer. Soc. Agron. 32, 683.CrossRefGoogle Scholar
Pendleton, R. L. (1950). Agron. J. 42, 115.Google Scholar
Piggott, C. J. (1953). Ann. Rep. Dep. Agric. Sierra Leone, Freetown.Google Scholar
Reed, W. E. (1951). Inform. Bull. U.S. Dep. Agric. no. 66.Google Scholar
SirRussell, E. J. & Russell, E. W. (1950). Soil Conditions and Plant Growth, 8th ed. p. 269. London.Google Scholar
Saunder, D. H. (1954). Trans. 5th Int. Congr. Soil. Sci. 3, 171, Leopoldville.Google Scholar
Saunders, W. H. M. & Williams, E. G. (1955). J. Soil Sci. 6, 254.CrossRefGoogle Scholar
Schofield, R. K. (1955). Soils and Fertilizers, 18, 373.Google Scholar
Sherman, M. S. (1942). Industr. Engng Chem. (Anal, ed.), 14, 182.Google Scholar
Thompson, L. M. et al. (1954). Soil Sci. 77, 185.CrossRefGoogle Scholar
Tkatchenko, B. (1954). Centre Réc. Agron. de Bingerville, Bull. Sci. no. 5, p. 261, Dakar.Google Scholar
Van Der Merwe, C. K. (1940). Sci. Bull. no. 231, Pretoria.Google Scholar
Walkley, A. (1947). Soil Sci. 63, 251.CrossRefGoogle Scholar
Williams, C. H. (1950 a). J. Agric. Sci. 40, 233.Google Scholar
Williams, C. H. (1950 b). J. Agric. Sci. 40, 243.CrossRefGoogle Scholar
Williams, E. G. & Saunders, W. M. H. (1956). J. Soil Sci. 7, 90.CrossRefGoogle Scholar