Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T17:12:57.295Z Has data issue: false hasContentIssue false

Aflatoxin control in preharvest maize: effects of chitosan and two microbial agents

Published online by Cambridge University Press:  27 March 2009

R. G. Cuero
Affiliation:
Prairie View A & M University, Texas A & M University System, Cooperative Agriculture Research Center, Prairie View, Texas, USA
E. Duffus
Affiliation:
Prairie View A & M University, Texas A & M University System, Cooperative Agriculture Research Center, Prairie View, Texas, USA
G. Osuji
Affiliation:
Prairie View A & M University, Texas A & M University System, Cooperative Agriculture Research Center, Prairie View, Texas, USA
R. Pettit
Affiliation:
Texas A & M University, College Station, Texas, USA

Summary

Growth and aflatoxin production of Aspergillus flavus in preharvest maize grown in Texas, USA in 1989 were determined after treatment with chitosan, Bacillus subtilis and Trichoderma harzianum. Individual or combined control treatments were applied at the milk stage of ear development, 48 h before or after kernel inoculation with an aflatoxigenic isolate of A. flavus. Single and combined treatments reduced A. flavus growth and aflatoxin production. Toxin accumulation was significantly (P < 0·05) reduced, in some instances to non-detectable concentrations by single pretreatments. Either B. subtilis or chitosan as independent treatments applied 48 h before inoculation with A. flavus inhibited aflatoxin production.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, C. R. & Hadwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology 3, 285287.CrossRefGoogle Scholar
Arai, K., Kimumaki, T. & Fujita, T. (1968). Toxicity of chitosan. Bulletin Tokai Register Fishery Research Laboratory 56, 8995.Google Scholar
Arthur, J. C. Jr, & Robertson, J. A. Jr, (1970). Photochemical process for detoxification of fungal metabolites. US Patent 3, 506, 452.Google Scholar
Association Of Official Analytical Chemists (1980). Official Methods of Analysis, 11th edn, p. 436, section 26.Google Scholar
Bull, A. T. & Bushell, M. E. (1976). Environmental control of fungal growth. In The Filamentous Fungi, Vol. 2, Biosynthesis and Metabolism Smith, J. & Berry, D. E.), pp. 131. London: Edward Arnold.Google Scholar
Cuero, R. G. (1989). Synergistic effect of zinc-chelating action of chitosan on suppression of aflatoxigenic Aspergilli growth and aflatoxin production: Biocontrol method. Abstract. Eighth Biennial Research Symposium, 1890 Land Grant Colleges and Universities, p. 52. Washington, D.C.Google Scholar
Cuero, R. G., Lillehoj, E. B., Kwolek, W. F. & Zuber, M. S. (1985). Mycoflora and aflatoxin in pre-harvest maize kernels of varied endosperm types. In Trichothecenes and Other Mycotoxins (Ed. Lacey, J.), pp. 109117. New York: John Wiley and Sons.Google Scholar
Cuero, R. G., Hernandez, I., Cardenas, H., Osorio, E. & Onyiah, L. C. (1987 a). Aflatoxin in Colombia. In Proceedings of the Workshop Aflatoxin in Maize Zuber, M. S., Lillehoj, E. B. & Renfro, B. L.), pp. 323333. Mexico: CIMMYT.Google Scholar
Cuero, R. G., Smith, J. & Lacey, J. (1987 b). Stimulation by Hyphopichia burtonii and Bacillus amyloliquefaciens of aflatoxin production by Aspergillus flavus in irradiated maize and rice. Applied Environmental Microbiology 53, 11421146.CrossRefGoogle ScholarPubMed
Cuero, R. G., Murray, A. & Smith, J. (1988 a). Control of toxigenic molds in cereal seeds. In Biocontrol of Plant Diseases, Vol. 2 Mukerji, J. & Garg, K. L.), pp. 6784. Boca Raton, Florida: CRC Press.Google Scholar
Cuero, R. G., Lillehoj, E. B., Cleveland, T. E. & Reine, A. H. (1988 b). Chitosan as a control agent of toxigenic fungal growth and aflatoxin production. Proceedings of the Japanese Association of Mycotoxicology. Supplement No. 1, pp. 194198. Tokyo: Japanese Association of Mycotoxicology.Google Scholar
Cuero, R. G., Smith, J. & Lacey, J. (1988 c). Mycotoxin formation by Aspergillus flavus and Fusarium graminearum in irradiated maize grains in the presence of other fungi. Journal of Food Protection 51, 452456.Google Scholar
Dennis, L. & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma. I. Production of nonvolatile antibiotics. Transactions of British Mycological Society 57, 2539.CrossRefGoogle Scholar
Devay, J. E., Garber, R. H. & Wakeman, R. J. (1987). Field management of cotton seedling diseases in California using chemical and biological seed treatments. In Proceedings, Beltwide Cotton Production Research Conference (Ed. Nelson, T. C.), pp. 2935. Dallas.Google Scholar
Diener, U. L. & Davis, N. D. (1968). Aflatoxin formation by Aspergillus flavus. In Aflatoxins (Ed. Goldblatt, L. A.), pp. 1364. New York: Academic Press.Google Scholar
Dorner, J. W., Cole, R. J., Sanders, T. H. & Blankenship, P. D. (1989). Interrelationship of kernel water activity, soil temperature, maturity and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia 105, 117128.CrossRefGoogle ScholarPubMed
Goldblatt, L. A. & Dollear, F. G. (1977). Detoxification of contaminated crops. In Mycotoxins in Human and Animal Health Rodricks, J. V., Hesseltine, C. W. & Mehlman, M. A.), pp. 139150. Park Forest South, Illinois: Pathotox.Google Scholar
Hadar, T., Chet, I. & Henis, Y. (1979). Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum. Phytopathology 69, 6468.CrossRefGoogle Scholar
Hadwiger, L. A., Fristensky, B. & Rigglemen, R. C. (1984). Chitosan, a natural regulator of plant-fungal pathogen interactions, increase crop yields. In Chitin and Chitosan, and Related Enzymes (Ed. Zikakis, J. P.), pp. 291302. New York: Academic Press.CrossRefGoogle Scholar
Henis, Y. & Papavizas, G. C. (1983). Factors affecting germinability and susceptibility to attack of sclerotia of Sclerotium rolfsii by Trichoderma harzianum in field soil. Phytopathology 73, 14691474.CrossRefGoogle Scholar
Kimura, N. & Hirano, S. (1988). Inhibitory strains of Bacillus subtilis for growth and aflatoxin production of aflatoxigenic fungi. Agriculture Biological Chemistry 52, 11731179.Google Scholar
Lewis, J. A. & Papavizas, G. C. (1985). Effect of mycelial preparations of Trichoderma and Gliocladium on populations of Rhizoctonia solani and the incidence of damping-off. Phytopathology 75, 812817.Google Scholar
Lillehoj, E. B., Kwolek, W. F., Zuber, M. S., Bockholt, A. J., Calvert, O. H., Findley, W. R., Guthrie, W. D., Horner, E. S., Josephson, L. M., King, S., Manwiller, A., Sauer, D. B., Thompson, D., Turner, M. & Widstrom, N. W. (1980). Aflatoxin in corn before harvest: Interaction of hybrids and locations. Crop Science 20, 731734.CrossRefGoogle Scholar
Mateles, R. I. & Adye, J. C. (1965). Production ofaflatoxins in submerged culture. Applied Microbiology 13, 208211.Google Scholar
Mixon, A. C., Bell, D. K. & Wilson, D. M. (1984). Effects of chemical and biological agents on the incidence of Aspergillus flavus and aflatoxin contamination of peanut seed. Phytopathology 74, 1440.CrossRefGoogle Scholar
Muzzarelli, R. A., Tanfani, F. & Scarpini, G. (1980). Chelating, film-forming, and coagulating ability of the chitosan-glucan complex from Aspergillus niger industrial wastes. Biotechnology and Bioengineering 22, 885896.Google Scholar
Payne, G. A. (1987). Aspergillus flavus infection of maize: silks and kernels. In Proceedings of the Workshop Aflatoxin in Maize Zuber, M. S., Lillehoj, E. B. & Renfro, B. L.), pp. 119129. Mexico: CIMMYT.Google Scholar
Pettit, R. E., Taber, R. A. & Foster, B. G. (1968). Occurrence of Bacillus subtilis in peanut kernels. Phytopathology 58, 254255.Google ScholarPubMed
Sas Institute Inc. (1989). SAS/STAT User's Guide Version 6, 4th edition, Vol. 1. Cary, NC, USA: SAS Institute Inc.Google Scholar
Scott, G. E. & Zummo, N. (1987). Host-Plant Resistance: Screening Techniques. In Proceedings of the Workshop Aflatoxin in Maize. (Eds Zuber, M. S., Lillehoj, E. B., & Renfro, B. L.), pp. 221232. Mexico: CIMMYT.Google Scholar
Stack, J. & Pettit, R. E. (1985). Fungi affecting the germination of sclerotia of Aspergillus flavus in soil. Proceedings American Peanut Research Education Society 17, 71.Google Scholar
Stack, J. P., Kenerley, C. M. & Pettit, R. E. (1988). Application of biological control agents. In Biocontrol of Plant Diseases Vol. 2 Mukerji, J. & Garg, K. L.), pp. 4354. Boca Raton, Florida: CRC Press.Google Scholar
Walker-Simmons, M., Hadwiger, L. & Ryan, C. A. (1983). Chitosan and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochemistry Biophysic Research Communication 110, 194199.Google Scholar
Wicklow, D. T., Hesseltine, C. W. & Shotwell, O. L. (1980). Interference competition and aflatoxin levels in corn. Phytopathology 70, 761.Google Scholar
Widstrom, N. W., Wilson, D. M. & McMillan, W. W. (1981). Aflatoxin contamination of preharvest corn as influenced by timing and method of inoculation. Applied Environmental Microbiology 42, 249251.CrossRefGoogle Scholar
Wilson, D. M. (1988). Potential for biocontrol of Aspergillus flavus and aflatoxin contamination. In Biocontrol of Plant Diseases, Vol. 2 Mukerji, J. & Garg, K. L.), pp. 5566. Boca Raton, Florida: CRC Press.Google Scholar
Zuber, M. S. & Lillehoj, E. B. (1988). Aflatoxin contamination in maize and its biocontrol. In Biocontrol of Plant Diseases, Vol. 2 Mukerji, J. & Garg, K. L.), pp. 6784. Boca Raton, Florida: CRC Press.Google Scholar
Zuber, M. S., Calvert, O. H., Lillehoj, E. B. & Kwolek, W. F. (1976). Preharvest development of aflatoxin Bl in corn in the United States. Phytopathology 66, 11201121.CrossRefGoogle Scholar