Agriculture's significant global contribution to greenhouse gas (GHG)emissions has spurred consumer and retailer interest in GHG mitigation andmay lead to incentive programs for producers to lessen GHG emissions. Alongthose lines, a producer choice is the use of embedded seed technologydesigned to enhance the marketable portion of yield through improveddisease, weed, and pest management with the same or lower use of inputs.This article examines commonalities and differences across three recentstudies on rice, sweet corn, and cotton, which addressed the impacts ofembedded seed technology on yield, input use, and GHG emissions. Embeddedseed technology can be any method of improving the physical or geneticcharacteristics of a seed. These seed enhancements can include physiologicalquality, vigor, and synchronicity (consistency across seedlings in time ofemergence and size) through traditional breeding, hybrid breeding, orbiotechnology.