Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:44:58.618Z Has data issue: false hasContentIssue false

How should proxies of cognitive reserve be evaluated in a population of healthy older adults?

Published online by Cambridge University Press:  17 October 2016

Catherine Grotz*
Affiliation:
Psychology of Aging Unit, University of Liège, Belgium
Xavier Seron
Affiliation:
Cognitive Neuroscience Unit, Louvain Catholic University, Belgium
Marie Van Wissen
Affiliation:
Psychology of Aging Unit, University of Liège, Belgium
Stéphane Adam
Affiliation:
Psychology of Aging Unit, University of Liège, Belgium
*
Correspondence should be addressed to: C. Grotz, Unité de Psychologie de la Sénescence, University of Liège, Traverse des Architectes (B63c) - Sart Tilman, B-4000 Liège, Belgium. Phone: +32 4 366 51 62. Email: [email protected].
Get access

Abstract

Background:

While some tools have been developed to estimate an individual's cognitive reserve (CR), no study has assessed the adequacy of the method used for assessing these CR proxy indicators. Therefore, we aimed to determine the most appropriate method to estimate CR by comparing two approaches: (1) the common assessment of CR proxies in the literature (e.g. years of education) and (2) the calculation of a comprehensive index based on most significant parameters used in the estimation of CR.

Methods:

Data on CR proxies (i.e. education, occupation, and leisure activities) were obtained in a sample of 204 older adults. Regression analyses were used to develop the two indices of CR (i.e. ICR-standard and ICR-detailed) and to determine which index best represented the level of one's CR.

Results:

The ICR-standard was calculated using a combination of the three most common measures of reserve in the literature: number of schooling years, complexity of the primary occupation, and amount of current participation in stimulating activities. The ICR-detailed was calculated using the most significant parameters (established in initial analyses) of CR: highest level of education combined with the number of training courses, last occupation, and amount of current participation in social and intellectual activities. The comparison of both indices showed that higher levels of ICR-standard and ICR-detailed were associated with a greater minimization of the effects of age on cognition. However, the ICR-detailed was more strongly associated to this minimization than the ICR-standard, suggesting that the ICR-detailed best reflect one's CR.

Conclusions:

This study is the first to show that it is of great importance to question methods measuring CR proxies in order to develop a clinical tool allowing a comprehensive and accurate estimation of CR.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbaraly, T. N. et al. (2009). Leisure activities and the risk of dementia in the elderly. Results from the three-city study. Neurology, 73, 854861. doi:http://dx.doi.org/10.1212/WNL.0b013e3181b7849b.CrossRefGoogle ScholarPubMed
Andel, R., Kåreholt, I., Parker, M. G., Thorslund, M. and Gatz, M. (2007). Complexity of primary lifetime occupation and cognition in advanced old age. Journal of Aging and Health, 19, 397415. doi:10.1177/0898264307300171.CrossRefGoogle ScholarPubMed
Anstey, K. and Christensen, H. (2000). Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: a review. Gerontology, 46, 163177. doi:10.1159/000022153.CrossRefGoogle ScholarPubMed
Berkman, L. F. et al. (1993). High, usual and impaired functioning in community-dwelling older men and women: findings from the MacArthur foundation research network on successful aging. Journal of Clinical Epidemiology, 46, 11291140. doi:10.1016/0895-4356(93)90112-E.CrossRefGoogle Scholar
Carlesimo, G. A. et al. (1998). Memory performances in young, elderly, and very old healthy individuals versus patients with Alzheimer's disease: evidence for discontinuity between normal and pathological aging. Journal of Clinical and Experimental Neuropsychology, 20, 1429. doi:10.1076/jcen.20.1.14.1482.CrossRefGoogle ScholarPubMed
Contador, I., Bermejo-Pareja, F., Del Ser, T. and Benito-León, J. (2015a). Effects of education and word reading on cognitive scores in a community-based sample of Spanish elders with diverse socioeconomic status. Journal of Clinical and Experimental Neuropsychology, 37, 92101. http://dx.doi.org/10.1080/13803395.2014.989819.CrossRefGoogle Scholar
Contador, I., Bermejo-Pareja, F., Puertas-Martin, V. and Benito-León, J. (2015b). Childhood and adulthood rural residence increases the risk of dementia: NEDICES study. Current Alzheimer Research, 12, 350357.CrossRefGoogle ScholarPubMed
Contador, I., Fernández-Calvo, B., Ramos, F. and Olazarán, J. (2016). Influence of educational attainment on cognition-based intervention programs for persons with mild Alzheimer's disease. Journal of the International Neuropsychological Society, 22, 577582. doi:10.1017/S135561771600014X.CrossRefGoogle ScholarPubMed
Deltour, J. (1993). Echelle de Vocabulaire Mill Hill de JC Raven: Adaptation Française et Normes Comparées du Mill Hill et du Standard Progressive Matrices (PM38). Manuel et Annexes. Braine le Château, Belgique: Application des Techniques Modernes.Google Scholar
Dixon, R. A., Bäckman, L. and Nilsson, L.-G. (2004) New Frontiers in Cognitive Aging. UK: Oxford University Press.CrossRefGoogle Scholar
Fergenbaum, J. H., Bruce, S., Lou, W., Hanley, A. J., Greenwood, C. and Young, T. K. (2009). Obesity and lowered cognitive performance in a Canadian first nations population. Obesity, 17, 19571963. doi:10.1038/oby.2009.161.CrossRefGoogle Scholar
Foubert-Samier, A. et al. (2012). Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of Aging, 33, e15e25. doi:10.1016/j.neurobiolaging.2010.09.023.CrossRefGoogle ScholarPubMed
Godefroy, O. (2008). Fonctions Exécutives et Pathologies Neurologiques et Psychiatriques: Évaluation en Pratique Clinique. Marseille, France: Solal Editeurs.Google Scholar
Hendricks, J. and Cutler, S. J. (1990). Leisure and the Structure of our Life Worlds. Ageing and Society, 10, 8594. doi:http://dx.doi.org/10.1017/S0144686X00007868.CrossRefGoogle Scholar
International Labour and Office. (2012) International Standard Classification of Occupations Structure, Group Definitions and Correspondence Tables, ISCO-08. Geneva: International Labour Organization.Google Scholar
Jones, R. N., Manly, J., Glymour, M. M., Rentz, D. M., Jefferson, A. L. and Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17, 593601. doi:10.1017/S1355617710001748.CrossRefGoogle ScholarPubMed
Katzman, R. et al. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138144. doi:10.1002/ana.410230206.CrossRefGoogle ScholarPubMed
Knopman, D. et al. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56, 4248. doi:http://dx.doi.org/10.1212/WNL.56.1.42.CrossRefGoogle ScholarPubMed
Leon, I., García-García, J. and Roldan-Tapia, L. (2014). Estimating cognitive reserve in healthy adults using the cognitive reserve scale. PloS one, 9, e102632. doi:10.1371/journal.pone.0102632.CrossRefGoogle ScholarPubMed
Manly, J. J., Schupf, N., Tang, M.-X. and Stern, Y. (2005). Cognitive decline and literacy among ethnically diverse elders. Journal of Geriatric Psychiatry and Neurology, 18, 213217. doi:10.1177/0891988705281868.CrossRefGoogle ScholarPubMed
Meng, X. and D'Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One, 7, e38268. doi:10.1371/journal.pone.0038268.CrossRefGoogle ScholarPubMed
Nucci, M., Mapelli, D. and Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging clinical and experimental research, 24, 218226. doi:10.3275/7800.Google ScholarPubMed
Opdebeeck, C., Martyr, A. and Clare, L. (2016). Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Aging, Neuropsychology, and Cognition, 23, 4060. doi:10.1080/13825585.2015.1041450.CrossRefGoogle ScholarPubMed
Raz, N. (2004). The aging brain: structural changes and their implications for cognitive aging. In Dixon, R. A., Bäckman, L. and Nilsson, L.-G. (eds.), New Frontiers in Cognitive Aging (pp. 115133). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Rectem, D., Poitrenaud, J., Coyette, F., Kalafat, M. and Van der Linden, M. (2004). Une épreuve de rappel libre à 15 items avec remémoration sélective (RLS-15). In Van der Linden, M., Adam, S., Agniel, A., Baisset Mouly, C., et al. (eds.), L'évaluation des Troubles de La mémoire : Présentation de Quatre Tests de Mémoire épisodique (avec leur étalonnage) (pp. 6984). Marseille: Solal.Google Scholar
Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276. doi:10.2466/pms.1958.8.3.271.CrossRefGoogle Scholar
Richards, M. and Sacker, A. (2003). Lifetime antecedents of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 25, 614624. doi:10.1076/jcen.25.5.614.14581.CrossRefGoogle ScholarPubMed
Richards, M., Shipley, B., Fuhrer, R. and Wadsworth, M. E. (2004). Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. BMJ, 328, 552557. doi:http://dx.doi.org/10.1136/bmj.37972.513819.EE.CrossRefGoogle ScholarPubMed
Schweizer, T. A., Ware, J., Fischer, C. E., Craik, F. I. and Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease. Cortex, 48, 991996. doi:10.1016/j.cortex.2011.04.009.CrossRefGoogle ScholarPubMed
Small, B. J., Dixon, R. A., McArdle, J. J. and Grimm, K. J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the victoria longitudinal study. Neuropsychology, 26, 144155. doi:10.1037/a0026579.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448460. doi:10.1017.S1355617701020240.CrossRefGoogle ScholarPubMed
Stern, Y. (2003). The concept of cognitive reserve: a catalyst for research. Journal of clinical and experimental neuropsychology, 25, 589593. doi:10.1076/jcen.25.5.589.14571.CrossRefGoogle ScholarPubMed
Valenzuela, M. J. and Sachdev, P. (2007). Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychological Medicine, 37, 10151025. doi:http://dx.doi.org/10.1017/S003329170600938X.CrossRefGoogle ScholarPubMed
Vermeeren, A. and Coenen, A. (2011). Effects of the use of hypnotics on cognition. In Van Dongen, H. and Kerkhof, G., (eds.), Human Sleep and Cognition, Part II: Clinical and Applied Research (pp. 89103). Amsterdam, The Netherlands: Elsevier.Google Scholar
Ward, D. D., Summers, M. J., Saunders, N. L. and Vickers, J. C. (2015). Modeling cognitive reserve in healthy middle-aged and older adults: the tasmanian healthy brain project. International Psychogeriatrics, 27, 579589. doi:10.1017/S1041610214002075.CrossRefGoogle ScholarPubMed
Wechsler, D. (2011). WAIS-VI Echelle d'intelligence de Wechsler Pour Adultes. 4th édition edn. Paris: Les Editions du Centre de Psychologie Appliquée.Google Scholar