Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-20T08:50:14.301Z Has data issue: false hasContentIssue false

Prey preference and reproductive success of the predatory mite Neoseiulus idaeos On the prey species Mononychellus tanajoa and Tetranychus lombardinii

Published online by Cambridge University Press:  19 September 2011

H. van den Berg
Affiliation:
Department of Entomology, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
R. H. Markham
Affiliation:
commonwealth Institute of Biological Control, P.O. Box 30148, Nairobi, Kenya
Get access

Abstract

Cassava green mite (CGM), Mononychellus tanajoa s.l., originating from South America, has become a serious pest in Africa, where it often occurs in mixed infestations with indigenous spider mites like Tetranychus lombardinii. The neotropical phytoseiid Neoseiulus idaeus is a candidate predator for classical biological control of CGM. Its prey preference and reproductive success on CGM and T. lombardinii were studied in the laboratory. Foraging individually on leaf discs, N. idaeus consumed CGM and T. lombardinii adult females equally in single-species populations but showed a distinct preference for CGM when both species were presented together at the same density. The predators developed and reproduced equally well on CGM and T. lombardinii.

Résumé

Originaire de l'Amérique du Sud, l'acarien vert du manioc, Mononychellus tanajoa s.l. a pris une ampleur considérable en Afrique, où il se manifeste parallèlement aux acariens indigènes tels Tetranychus lombardinii. Neoseiulus idaeus, un phytoséiide provenant de la zone intertropicale du Nouveau-Monde, est un prédateur potentiellement intéressant dans le cadre de la lutte biologique classique contre l'acarien vert. Les études de laboratoire ont porté sur ses préférences alimentaires et sa faculté de reproduction sur les acariens verts et T. lombardinii. N. idaeus consomma tant les femelles adultes des acariens verts que celles de T. lombardinii, lorsque chaque espèce était placée individuellement sur des disques de feuille; par contre, il marqua une nette préférence pour les acariens verts dans une population mixte comprenant les deux espèces à densité égale. Le prédateur se développa et se reproduisit avec la même facilité sur les acariens verts et sur T. lombardinii.

Type
Symposium XI: Africa-wide Biological Control Programme of Cassava Pests
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellotti, A. C. (1985) Cassava. In: Spider Mites, Their Biology, Natural Enemies and Control (Edited by Helle, W. and Sabelis, M. W.), Vol. IB, pp. 333338. Elseviers, Amsterdam.Google Scholar
Fernando, M. H. J. P. and Hassell, M. P. (1980) Predatoryprey responses in an acarine system. Res. Popul. Ecol. 22, 301322.CrossRefGoogle Scholar
Fransz, H. G. (1974) The functional response to prey density in an acarine system. Simulation Monographs, Pudoc, Wageningen, The Netherlands.Google Scholar
Helle, W. and Sabelis, M. W. (Editors) (1985) Spider Mites, Their Biology, Natural Enemies and Control. Elsevier, Amsterdam.Google Scholar
Herren, H. R. and Lema, K. M. (1983) Entomology. Followup on previous releases of natural enemies. IITA Annual Report for 1982, 9496.Google Scholar
Hoy, M. A. (1982) Recent advances in knowledge of the Phytoseiidae. Proc. Formal. Conf. Acar. Soc. Am. San Diego, 1981.Google Scholar
Hoy, M. A. and Smilanick, J. H. (1981) Non-random prey location by the phytoseiid Metaseiulus occidentalis. Differential responses to several spider mite species. Ent. exp. appl. 29, 241253.CrossRefGoogle Scholar
Lyon, W. F. (1973) A plant feeding mite Mononychellus tanajoa (Bondar) new to the African continent threatens cassava (Manihot esculenta Crantz) in Uganda. Pest. Artie. News Summ. 19, 3673.CrossRefGoogle Scholar
Rabbinge, R. (1976) Biological control of the fruit-tree red spider mite Simulation Monographs, Pudoc, Wageningen, The Netherlands.Google Scholar
Sabelis, M. W. (1981) Biological control of two-spotted spider mites using phytoseiid predators. Part 1. Agric. Res. Rep. Wageningen, The Netherlands.Google Scholar
Sabelis, M. W. (1985a) Prédation on spider mites. In: Spider Mites, Their Biology, Natural Enemies and Control (Edited by Helle, W. and Sabelis, M. W.), Vol. 1B, pp. 103129. Elseviers, Amsterdam.Google Scholar
Sabelis, M. W. (1985b) Development. In: Spider Mites, Their Biology, Natural Enemies and Control (Edited by Helle, W. and Sabelis, M. W.), Vol. 1B, pp. 4353. Elseviers, Amsterdam.Google Scholar
Sabelis, M. W. and Dicke, M. (1985) Long-range dispersal and searching behaviour. In: Spider Mites, Their Biology, Natural Enemies and Control (Edited by Helle, W. and Sabelis, M. W.), Vol. 1B, pp. 141160. Elseviers, Amsterdam.Google Scholar