Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T06:43:37.228Z Has data issue: false hasContentIssue false

Morphological and Biological Studies on Typhlodromus Talbii Athias-Henriot (Gamasida: Phytoseiidae)

Published online by Cambridge University Press:  19 September 2011

M. A. Zaher
Affiliation:
Agricultural Zoology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
M. A. El-Borolossy
Affiliation:
Plant Protection Department, National Research Center, Dokki, Cairo, Egypt
Fatma S. Ali
Affiliation:
Agricultural Zoology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
Get access

Abstract

The immature stages of the predaceous mite Typhlodromus talbii Athias-Henriot are described. The mite was reared on different prey species and pollen in the laboratory, and its developmental parameters calculated. Tydeus californicus (Banks) was found to be the most suitable and nourishing diet, giving a shorter life cycle and higher female fecundity (8.8 days and 33.4 eggs respectively), than the scale insect Coccus acuminatum (Gennadius) (10.0 days and 24.8 eggs respectively) at 25 °C. Other associates of Typ. talbii, the eriophyid Cesaberoptus kenyae Keifer, the tetranychid Oligonychus mangiferus (R. & S.) as well as date palm and castor oil pollen, were unsuitable diet. When reared on moving stages of Tyd. californicus (Banks) at 70 ± 5 % RH, 16:8 (L:D) h photoperiod and temperatures of 15,20,25,28,30,32 and 35 °C, the total developmental time of Typ. talbii averaged 21.3, 12.4, 8.8, 7.6, 7.1, 5.8 and 11.6 days respectively. The intrinsic rate of natural increase (rm) and the net reproduction (Ro) reached maximum values of 0.299 individuals per female per day and 28.06 times respectively, at 32 °C.

Résumé

Les stades juvéniles de l'acarien prédateur Typhlodromus talbii Athias-Henriot sont décrits. L'acarien a été élevé au laboratoire sur différentes espèces de proies et différents pollens, et ses paramètres de développement calculés. Tydeus californicus (Banks) a été la proie la mieux adaptée et la plus nourrissante ayant donné à 25 °C un cycle de vie plus court et une plus forte fécondité (8.8 jours et 33.4 oeufs respectivement), que la cochenille Coccus acuminatum (Gennadius) (10.0 jours et 24.8 œufs respectivement). Les autres régimes alimentaires de T. talbii, l'Eriophyide Cesaberoptus kenyae Keifer, le tétranyche Olygonychus mangifera (R. & S.), de même que les pollens du palmier dattier et du ricin sont des nourritures inapropriées. Lorsqu'il a été élevé sur des stades mobiles de T. californicus à 70 ± 5% HR, 16/8 (J:N) de photopériode et à des températures de 15, 20, 25, 30, 32 et 35 °C, la durée totale du développement de T. talbii est en moyenne de 21.3,12.4, 8.8, 7.6, 7.1, 5.8 et 11.6 jours respectivement. Le taux intrinsèque d'accroissement naturel (rm) et le taux net de reproduction (R0) ont des valeurs maxima de 0.299 individus par femelle et par jour et 28.06 respectivement, à 32 °C.

Type
Research Articles
Copyright
Copyright © ICIPE 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou-Awad, B. A., El-Sherif, A. A., Hassan, M. F. and Abou-Elela, M. M. (1998a) Life history and life table of Amblysehis badryi, as a specific predator of eriophyid grass mites (Acari: Phytoseiidae: Eriophyidae). Z. Pflanzenk. Pflanzenschutz 105, 422428.Google Scholar
Abou-Awad, B. A., El-Sherif, A. A., Hassan, M. F. and Abou-Elela, M. M. (1998b) Laboratory studies on development, longevity, fecundity and predation of Cydnoseius negevi (Swirski & Amitia) (Acari: Phytoseiidae) with two mite species as prey. Z. Pflanzenk, Pflanzenschutz 105, 429433.Google Scholar
Abou-Setta, M. A., Sorrell, R. W. and Childers, C. C. (1986) Life 48: A basic computer species. Fla. Entomol. 69, 690CrossRefGoogle Scholar
Abou-Setta, M. A., Sorrell, R. W. and Childers, C. C. (1986) Life 48: A basic computer program to calculate life table parameters for an insect or mite species. Fla. Entomol. 69, 690697.CrossRefGoogle Scholar
Amitia, S., Wysoki, M. and Swirski, E. (1969) A case of thelytoky in a phytoseiid mite (Acarina: Mesostigmata) with cytological studies. Isr. J. Agric. Res. 19, 4952.Google Scholar
Athias-Henriot, C. (1975) The idiosomatic euneotaxy and epineotaxy in gamasids (Arachnida, Parasitiformes). Z. Zool. Syst. Evol. Forsch. 13, 97109.CrossRefGoogle Scholar
Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population, J. Aram. Ecol. 17, 1526.CrossRefGoogle Scholar
El-Badry, E. A., Afifi, A. M., Issa, G.I. and El-Banhawy, E. M. (1968) Effectiveness of the predaceous mite Amblyseius gossypii as a predator of the three tetranychid mites (Acarina: Phytoseiidae). Z. angew. Ent. 62, 189194.CrossRefGoogle Scholar
El-Banhawy, E. M. and El-Bagoury, M. E. (1991) Biological studies of the predaceous mite Typhlodromus pelargonicus. A predator of the two spotted spider mite Tetranychus urticae on cucumber plants (Acari: Phytoseiidae: Tetranychidae). Entomophaga 36, 587591.CrossRefGoogle Scholar
Fleschner, C. A. and Arakawa, K. Y. (1953) The mite Tydeus californicus on citrus and avocado leaves, J. Econ. Ent. 45, 1092.CrossRefGoogle Scholar
Ibrahim, S. M. (1988) Ecological and biological studies on some predacious mites associated with citrus trees in Egypt. PhD Thesis, Cairo Univ., 148 pp.Google Scholar
Kennet, C. E. (1958) Some predaceous mites of the subfamilies Phytoseiinae and Aceosejinae (Acarina: Phytoseiidae, Aceosejidae) from central California with description of new species. Ann. Ent. Soc. Am. 51, 471479.CrossRefGoogle Scholar
Kinsley, C. B. and Swift, F. C. (1971) Biological studies of Amblyseius umbraticus (Acarina: Phytoseiidae). Ann. Ent. Soc. Am. 64, 813822.Google Scholar
Kolodochka, L. A. (1974) Case of thelytoky in the mite Amblysieus herbarius (Parasitiformes, Phytoseiidae). Ekologya 5, 95.Google Scholar
Kolodochka, L. A. (1975) A case of thelytoky in Amblyseius agretis (Parasitiformes: Phytoseiidae). Vestn. Zool. 2, 8485.Google Scholar
Lindquist, E. E. and Evans, G. O. (1965) Taxonomic concepts in the Ascidae with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem. Ent. Soc. Can. 47, 166.Google Scholar
McMurtry, J. A. (1992) Dynamic and potential impact of generalist phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp. Appl. Acarol. 14, 371382.CrossRefGoogle Scholar
McMurtry, J. A., Huffaker, C. B. and van de Vrie, M. (1970) Ecology of tetranychid mites and their natural enemies: A review. 1-Tetranychid enemies: Their biological characters and the impact of spray practices. Hilgardia 40, 331390.CrossRefGoogle Scholar
van der Merwe, G. G. (1968) A taxonomic study of the family Phytoseiidae (Acari) in South Africa with contributions to the biology of two species. Entomol. Mem. Dep. Agric. Tech. Serv. Repub. S. Afr. 18, 1198.Google Scholar
Momen, F. M. and El-Sawy, S. A. (1993) Biological and feeding behaviour of the predatory mite Amblyseius swirskii (Acarina: Phytoseiidae). Acarologia 34, 199204.Google Scholar
de Moraes, G. J. and McMurtry, J. A. (1981) Biology of Amblyseius citrifolius (Denmark and Muma) (Acarina: Phytoseiidae ). Hilgardia, Entomol. 49, 129.CrossRefGoogle Scholar
Muma, M. H. (1964) The population of Phytoseiidae on Florida citrus. Fla. Entomol. 47, 511.Google Scholar
Nassar, O. A. (1976) Incidence of predaceous mites on fruit trees in North East of Delta, with emphasis on Cunaxa seterostis (Hermann) MSc Thesis, Fac. of Agriculture, Cairo Univ., 91 pp.Google Scholar
Rowell, H. J., Chant, D. A. and Hansell, I. C. (1978) The determination of setal homologies and setal pattern of the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata ). Can. Ent. 110, 859876.Google Scholar
Sabelis, M. W. (1981) Biological control of two spotted spider mite using phytoseiid predators. Part 1-Agricultural Research Reports 910. Pudoc, Wageningen, (Netherlands), 242 pp.Google Scholar
Soliman, Z. R., Zaher, M. A. and El-Safy, G. S. (1974) An attempt for rearing Tydeus californicus (Banks) on sweet potato leaves in Egypt. Bull. Soc. Ent. Egypt 58, 217220.Google Scholar
Takahashi, F. and Chant, D. A. (1994) Adaptive strategies in the genus Phytoseiulus Evans (Acari: Phytoseiidae) survivorship and reproduction. Int. J. Acarol. 20, 8797.CrossRefGoogle Scholar
Tanigoshi, L. K., Hoyt, S. C., Browne, R. W. and Logan, J. A. (1975) Influence of temperature on population increase of Metaseiulus occidentalis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Amer. 68, 979986.CrossRefGoogle Scholar
Wahab, A. E. A., Yousef, A. A. and Hemeda, H.M. (1974) Biological studies on the tydeid mite Tydeus californicus. (Banks) (Acarina, Tydeidae). Bull. Soc. Entomol. Egypt 58, 349353.Google Scholar
Wahba, M. L. (1976) Studies on tydeid mites (Family Tydeidae), especially as related to mango and citrus trees. PhD Thesis, Ain Shams Univ. 119 pp.Google Scholar