Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T10:45:59.109Z Has data issue: false hasContentIssue false

Effect of temperature on the ovarian development in the pupa of Glossina pallidipes Austen I: Estimation of the environmental temperature exposure from the size of the first egg follicle

Published online by Cambridge University Press:  19 September 2011

Mohamed M. Mohamed-Ahmed
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Leonard H. Otieno
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Steve Mihok
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Joseph Muchiri
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Newly-deposited pupae Glossina pallidipes were incubated until emergence at constant temperature (20.5, 22.5, 25.0, 27.5, and 29.5°C) and compared with pupae held at ambient conditions (19 to 31°C). Egg follicles and enclosed oocytes of newly-emerged females were dissected and their lengths measured together with the lengths of the cutting blade of the hatchet cell of the right and left wings. Linear discriminant functions analysis showed that the mean length of egg follicle A accounted for 80% of the temperature-related variability. We therefore used a simple predictive equation for temperature experience based on mean follicle length in small batches of newly-emerged females. The equation predicted with reasonable accuracy the temperature experience of 19 monthly samples of newly-emerged G. pallidipes reared in an insectary under ambient conditions. Mean sizes of egg follicle A of the newly-emerged tsetse may therefore be of utility in estimating temperature experience of pupae.

Résumé

Des pupes nouvellement pondues de Glossina pallidipes ont été incubées jusqu'à l'émergence à des températures constantes (20,5, 22,5, 25,0, 27,5 et 29,5°C) puis comparées aux pupes exposées aux conditions ambiantes (19 à 31°C). Les follicules d'oeufs et les oocytes y inclus des femelles nouvellement émergées ont été dissequés et leurs longueurs mesurées en relation avec celles du côté tranchant de la cellule en forme de hâche des ailes droite et gauche. L'analyse du composant majeur a montré que la longuer moyenne du follicule d'oeuf A était responsable pour 80% de la variabilité induite par la température. Nous avons par conséquent utilisé une simple équation prédictive pour la température d'exposition basée sur la longueur moyenne du follicule sur un petit groupe de femelles nouvellement écloses. L'équation a prédit avec relativement d'exactitude la température d'exposition de 19 échantillons mensuels de G. pallidipes nouvellement émergées élevées dans un insectarium aux conditions ambiantes. La taille moyenne du follicule A du tsé tsé nouvellement éclos peut par conséquent être utile pour l'estimation de la température d'exposition des pupes.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bursell, E. (1960) The effect of temperature on the consumption of fat during pupal development in Glossina. Bull. Ent. Res. 51, 583598.Google Scholar
Buxton, P. A. (1955) The Natural History of Tsetse Flies, London School of Hygiene and Tropical Medicine, Memoir 10, 816 pp. H. K. Lewis and Co. Ltd., London.Google Scholar
Dransfield, R. D., Brightwell, R., Kilu, J., Chaudhury, M. F. and Adabie, D. A. (1989) Size and mortality rates of Glossina pallidipes in the semi-arid zone of southwestern Kenya. Med. Vet. Entomol. 3, 8395.Google Scholar
EATRO (1955) Notes for field studies of tsetse flies in East Africa. E.A. Tsetse and Trypanosomiases Research Organisation. Nairobi, E. A. High Commission.Google Scholar
Glasgow, J. P. (1963) Seasonal variations in size and colour, and daily changes in the distribution of Glossina pallidipes Austen in the South Busoga Forest, Uganda. J. Anim. Ecol. 31, 647666.Google Scholar
Glasgow, J. P. (1970) The Glossina community. In The African Trypanosomiases (Edited by Mulligan, H. W.), pp. 348381. Allen and Unwin, London.Google Scholar
Harley, J. M. B. (1966) Seasonal and diurnal variations in physiological age and trypanosome infection rate of females of Glossina pallidipes Austen, G. palpalisfuscipes Newst, and G. brevipalpis Newst. Bull. Ent. Res. 56, 595604.Google Scholar
Harley, J. M. B. (1968) The influence of temperature on reproduction and development in four species of Glossina (Diptera:Muscidae). Proc. R. Ent. Soc. Lond. (A) 43, 170177.Google Scholar
Jackson, C. H. N. (1946) An artificially isolated generation of tsetse flies (Diptera). Bull. Ent. Res. 37, 391399.Google Scholar
Jackson, C. H. N. (1953) Seasonal variations in the mean size of tsetse flies. Bull. Ent. Res. 43, 703706.Google Scholar
Leegwater Van der Linden, M. E. (1984) Temperature and fertility in Glossina pallidipes. Trop. Geograph. Med. 36, 391.Google Scholar
Mellanby, K. (1937) Experimental work on reproduction in the tsetse fly Glossina palpalis. Parasitology 29, 131141.Google Scholar
Nash, T. A. M. (1955) The fertilization of Glossina palpalis in captivity. Bull. Ent. Res. 46, 357368.Google Scholar
Phelps, R. J. and Burrows, P. M. (1969a) Lethal temperatures for puparia of Glossina. Entomol. Exp. Appl. 22, 2332.CrossRefGoogle Scholar
Phelps, R. J. and Burrows, P. M. (1969) Puparial duration in Glossina morsitans orientalis under conditions of constant temperature. Entomol. Exp. Appl 22, 3343.CrossRefGoogle Scholar
Ochieng, R. S., Otieno, L. H. and Banda, H. K. (1987) Performance of the tsetse fly Glossina pallidipes reared under simple laboratory conditions. Entomol. Exp. Appl. 45, 265270.CrossRefGoogle Scholar
Rajagopal, P. K. and Bursell, E. (1966) The effect of temperature on the oxygen consumption of tsetse pupae. Bull. Ent. Res. 56, 219225.Google Scholar
Rogers, D. (1979) Tsetse population dynamics and distribution: A new analytical approach. J. Anim. Ecol. 48, 825849.CrossRefGoogle Scholar
Saunders, D. S. (1961) Studieson ovarian development in tsetse flies (Diptera: Glossinidae). Parasitology 51, 545564.Google Scholar
Taylor, A. W. (1932) The development of West African strain of Trypanosoma gambiense in Glossina tachinoides under normal laboratory conditions and at raised temperatures. Parasitology 24, 401418.Google Scholar
Tobe, S. S. and Langley, P. A. (1978) Reproductive physiology of Glossina. Annu. Rev. Ent. 23, 283308.CrossRefGoogle ScholarPubMed
Turner, D. A. and Brightwell, R. (1986) Anevaluation of a sequential aerial spraying against Glossina pallidipes Austen (Diptera: Glossinidae) in the Lambwe Valley of Kenya: Aspects of post-spray recovery and evidence of natural population regulation. Bull. Ent. Res. 76, 331349.Google Scholar
Van der Vloedt, A. M. V. (1972) The relationship between temperature, duration of the pupal stage, appearance of the ovaries and reproductive potential of laboratory Glossina palpalis. Trans. R. Soc. Trop. Med. Hyg. 66, 222223.Google Scholar